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ABSTRACT 

A shared information system is a series of computer systems 

interconnected by some kind of communication network. There are data repositories 

residing on each computer. These data repositories must somehow be integrated. The 

purpose for using distributed and multi-database systems is to allow users to view 

collections of data repositories as if they were a single entity. 

Multidatabase systems, better known as heterogeneous multidatabase systems, are 

characterized by dissimilar data models, concurrency and optimization strategies and 

access methods. Unlike homogenous systems, the data models that compose the global 

database can be based on different types of data models. It is not necessary that all 

participant databases use the same data model. 

Federated distributed database systems are a special case of multidatabase 

systems. They are completely autonomous and do not rely on the global data dictionary 

to process distributed queries. 

Processing distributed query requests in federated databases is very difficult since 

there are multiple independent databases with their own rules for query optimization, 

deadlock detection, and concurrency. 

Expert systems can play a role in this type of environment by supplying a 

knowledge base that contains rules for data object conversion, rules for resolving naming 

conflicts, and rules for exchanging data. 
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I. INTRODUCTION 

In this thesis we investigate the use of expert systems in Federated Multi- 

Database environments to resolve semantic and structural conflicts. Some models for 

this kind of database exist and have been adopted by different database communities, 

but there is no consensus on how to implement the models. We illustrate the 

principles of multidatabase systems and the role of expert systems to provide a 

virtually centralized database from these distributed heterogeneous databases. First, 

we examine the spectrum of approaches representative of the "database engineering." 

Next we introduce the roles of expert systems in these models. 

A.        BACKGROUND 

A shared information system can be considered as a series of computer systems 

interconnected by some kind of communication network. There are data repositories 

residing on each computer which must somehow be integrated. Unlike homogenous 

distributed database systems, the data models that compose the global database can be 

based on different types of data models; it is not necessary that all participant databases 

use the same data model. The goal of using distributed and multi-database systems is to 

allow users to view collections of data repositories as if they were a single entity. 

One can classify these database systems as distributed database systems, multi- 

database systems, or federated database systems. Distributed database systems are 

homogenous systems and are characterized by similar access methods, optimization 



strategies, concurrency strategies, and data models. Multi-database systems, better known 

as heterogeneous multi-database systems, are characterized by dissimilar data models, 

concurrency and optimization strategies and access methods. Distributed and multi- 

database systems have at least one feature in common. They both utilize a global data 

dictionary or schema to assist users to access data objects from the remote site. 

Federated distributed database systems are a special class of multi-database 

systems. They are completely autonomous and do not rely on the global data dictionary 

to process distributed queries. Processing distributed query requests in federated 

databases is very difficult since there are multiple independent databases with their own 

rules for query optimization, deadlock detection, and concurrency. Also the absence of a 

global schema and global mapping algorithms further complicate the architecting of such 

systems. 

The rapid evolution of the Internet has spurred the growth of federated 

database systems. Users of the Internet want to reach any kind of information just by 

typing a couple of letters with the representation of information remaining transparent 

to them. Many research groups have worked on this issue, often referred to as. 

"integration of heterogeneous databases," "data interoperability," or "management of 

multiple information sources". Among all these research projects, only the following 

have been well prototyped and demonstrated: 

• Tsimmis     (The Stanford-IBM Manager of Multiple Information 

Sources) 

• Garlic (IBM Almaden Database group) 

• The Information Manifold Project (AT&T) 



• Strudel (AT&T) 

• Disco   (Distributed   Information   Search   Components   at   INRIA, 

Rocquencourt) 

B. GOAL 

Our goal is two-fold. First, we intend to identify the challenges in building 

integrated information systems and the best methods to address the challenges. 

Second, we plan to show how expert systems can be used to apply these methods. 

Expert systems can play a role by supplying a knowledge base that contains rules for 

data object conversion, rules for resolving naming conflicts, and rules for exchanging 

data. 

All units, headquarters, and supply centers in the Turkish Navy keep their own 

database designs separate from each other. Although all these databases are domain 

specific, we believe that our thesis will help to build a unique integrated database all 

over the Turkish Navy. 

C. THESIS ORGANIZATION 

Chapter II describes the current architectures for Federated Distributed Multi- 

database models. It discusses two main models, the agent-based and mediator- 

wrapper models. Chapter III contains detailed information about the related work 

done in this area. Chapter IV presents the semantic representation of data models. In 



Chapter V, we discuss the integration of information and different methods of 

integration. Chapter VI provides conclusions, recommendations and future work. 

Appendix A presents the fundamentals of expert systems. 



n.       CURRENT ARCHITECTURES FOR HETEROGENEOUS DISTRIBUTED 

MULTI-DATABASE MODELS 

Information systems that provide interoperation and some degree of integration 

among multiple databases have been called multidatabase systems [Ref.l], federated 

databases [Ref.2], and more generally, heterogeneous distributed database systems 

(HDDBSS) [Ref.3]. The term federated database system is used to imply the role of the 

autonomy ([Ref. 4]. There is always a trade-off between sharing and autonomy: the more 

sharing, the less autonomy. For instance, the use of schema integration increases data 

sharing dramatically-while reducing database autonomy to almost nothing. 

Effective sharing and use of data and functions can be achieved using different 

forms. Common forms include integration, interoperability, interdependency and 

exchange. Data integration generally implies uniform and transparent access to data 

managed by multiple databases. A mechanism to achieve this integration is "an 

integrated schema involving all or parts of the component Schemas that are integrated" 

[Ref.3]. In HDDBSS, it is not necessary to have a single global integrated schema in the 

entire system. 

We can classify the existing solutions to the data integration problem into three 

categories: global schema integration, federated databases, and multidatabase language 

approach. These categories are presented according to the level of integration each 

component systems demonstrates. We briefly explain general approaches and associated 

architectures for heterogeneous distributed databases in the following section. 



A.  GLOBAL SCHEMA INTEGRATION 

Global schema integration is one of the first attempts at data sharing, and is based 

on the complete integration of multiple databases in order to provide a single view. The 

advantage of this approach is that users have a consistent and uniform view of and access 

to data. Users are unaware that the databases they are using are heterogeneous and 

distributed. Multiple databases logically appear as a single, homogenous database. 

However, global schema integration has several disadvantages. 

This type of database is hard to automate because of the difficulty of identifying 

the relationships among the qualities of two Schemas as well as the relationships among 

data object types of different databases. The general problem of integrating relational 

Schemas does not have a clear-cut solution. Human understanding is required to solve 

many types of semantic, structural, or behavioral conflicts. 

Autonomy is often sacrificed to solve semantic conflicts. Because the global 

integration process requires complete semantic knowledge prior to commencing, all 

databases involved need to reveal information about their conceptual Schemas or data 

dictionaries. Sometimes, this process may even require a local database to alter its 

schema to make the integration easier. 

If there are more than two databases, different integrationmethods exist. One may 

either work with all Schemas at once, or consider two at a time and the combine them in 

the final stage of the integration process. Depending on the order in which schema are 

integrated, only incomplete semantic knowledge is used at each step. As a result, some 

semantic knowledge may be missing from the final global schema unless integration is 



completed in one step and considers all exported Schemas at once. It is hard to prove 

correctness of a global schema. 

It is obvious that global schema integration is both time consuming and error 

prone. This approach is not suitable for given the size of database networks which 

require frequent dynamic changes of Schemas, as it may be necessary to re-do the entire 

integration process. 

B.       FEDERATED DATABASE SYSTEMS (FDBSS) 

The goal of FDBSs architecture is to remove the need for static global schema 

integration, and FDBSs are a compromise between no integration and total integration 

approaches. In contrast to global schema integration, the amount of integration does not 

have to be complete. This architecture allows each local database to have more control 

over the sharable information. As FDBSs depend on the needs of the users, the systems 

may either be tightly or loosely coupled. Typical FDBS architecture has a common data 

model (CDM) and an internal command language, and relies on the following types of 

Schemas and processors: 

• Local schema: Is the conceptual schema of a component database, 

expressed in the data model of component DBMSS. 

• Component schema: Alleviates data model heterogeneity facilitates 

negotiation, schema integration (for tightly coupled), and specification of 

views and queries (for loosely coupled). A local schema is translated to the 



common data model of the FDBS. Each local database should store one-to- 

one mappings between the local data model and CDM schema objects 

during schema translation [Ref.2]. 

Transforming processor (generally called "wrapper"): Uses the one-to-one 

mappings between local and CDM schema objects to translate commands 

from the internal command language to the local query language, and data 

from local format to CDM format. The transforming processor exists 

between local and component Schemas, and is provided by each data 

source. [Ref.3] 

Export schema: Can classify objects as "sharable" to other members of the 

FDBS, and contain access control information (i.e., only specific 

federation users can access certain information.) As a result, association 

autonomy is maintained. 

Filtering processor: Uses the access control information specified in the 

export schema, and acts as an access controller sitting between the 

component and export Schemas. A filtering processor limits the set of 

allowable operations submitted to the corresponding component schema. 

Federated schema: Can be a statically integrated schema or a dynamic user 

view of multiple export schemas. The integrated schema is managed and 

controlled by the FDBS administrator if the FDBS is tightly coupled. The 

view is managed and controlled by users if the FDBS is loosely coupled. 

There can be multiple federated schemas, one for each class federation 

users. 



Constructing processor: Uses the distribution information stored in the 

federated dictionary. The constructing processor performs query 

decomposition from one federated schema to one or more export Schemas, 

and merges data produced by several processors into a single data set for 

other single processor, i.e., negotiation and schema integration" [Ref.3]. 

External schema: Is mainly for customization when the federated schema 

is very large and complicated. "External schema is another level of 

abstraction for a particular class of users/applications, which only require a 

subset federated schema" [Ref.3]. It contains additional integrity 

constraints and access control information. This schema is not needed for 

loosely coupled FDB but is essential for those that are tightly coupled 

[Ref.2]. The data model of external schema can be different from that of a 

federated schema, necessitating a transforming processor for command and 

data translation. 

Data dictionary: Contains external, federated, and export schema. In a 

tightly coupled system, component and local schema objects are 

sometimes contained. External federated Schemas, export Schemas and 

other mappings between Schemas are all stored in the data dictionary of the 

FDBS at distinct locations. Other information such as statistics and 

heuristics for query optimization, schema-independent information such 

as functions for unit/format transformations, network addresses, 

communication facility, etc., are stored in the data dictionary. 



1.        Loosely Coupled FDBSs 

It is the user's responsibility to maintain and create the federation schema in 

loosely coupled FDBSS-- control is not enforced by the federation system or by its 

administrators. "Creating a federated schema corresponds to creating a view against 

relevant export Schemas" [Ref.2]. Federated Schemas are dynamic and can be created or 

eliminated at any given point. In that respect, each user must be knowledgeable about the 

information and structure of the relevant export Schemas in order to create views. 

Loosely coupled systems have many advantages. For example, by using dynamic 

attributes, federation users have the flexibility to map different or multiple semantic 

meanings among the same set of objects in export Schemas. Loosely coupled systems 

can also cope with dynamic changes of component or export Schemas better than tightly 

coupled systems, because it is easier to construct new views than to create original global 

Schemas. 

Unfortunately, FDBSs also have some disadvantages. "If two or more 

independent users access similar information from the same component databases, they 

create their own mappings/views and don't know if the others have done the same 

mappings/views" [Ref.3]. Thus, there is a potential for duplicate work in view creations 

and the understanding of the export Schemas. Another difficulty is understanding export 

Schemas when the number of Schemas is large; because of multiple semantic mappings 

between objects, view updating cannot be well supported. 
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2.        Tightly Coupled FDBSs 

The objectives of tightly coupled FDBR's are to provide location, replication, and 

distribution transparency. Federation administrators have full control over the creation 

and maintenance of federated Schemas and access to export Schemas in tightly coupled 

FDBSS. A single federated schema helps maintain uniformity in the semantic 

interpretation of multiple integrated component data [Ref.2]. Multiple federated Schemas 

are harder to maintain, as multiple constraints from multiple export databases are difficult 

to enforce and could lead to inconsistencies in semantics [Ref.3]. 

Disadvantages of tightly coupled systems arise as a result of the fact that FDBS 

administrators and component DBAs negotiate to form export Schemas. During 

negotiation, administrators may be allowed to read the component Schemas without any 

data access, clearly violating autonomy. Additionally, when there are changes in the 

export component Schemas, integrations need to be done from scratch for each federated 

schema. Therefore, once a federated schema is created, it is very difficult to change (i.e., 

the schema becomes static). 

For the Federated Database system, two different architectures are relevant, the 

Mediator-Wrapper architecture (discussed in Section D) and the Intelligent Agent 

approach (discussed in Section E). 

C.        MULTIDATABASE LANGUAGE APPROACH 

The multidatabase language approach is intended for users of a multidatabase systems 

who do not use a predefined global or partial schema. The aim of a multidatabase 

11 



language is to create mechanisms that can simultaneously perform queries involving 

several databases. Queries can specify data from any local participating database. 

Multidatabase language systems are more loosely coupled than the classes covered 

in the previous sections. Such language has features that are not supported in traditional 

languages. For instance, a global name can be used to identify a collection of databases, 

(e.g., restaurants, airlines). Databases that cover the same subject are grouped under a 

collective name using a special query language (e.g. MSQL). 

One major criticism of the multidatabase language approach is its lack of 

distribution and location transparency for users. Because of this hindrance to ease of use, 

users have to find the right information in a potentially large network of databases. 

Moreover, users are responsible for understanding Schemas and detecting and resolving 

semantic conflicts. The multidatabase language provides adequate operatoris and 

expressive constructs for users to perform the resolution of semantic conflicts at various 

abstraction levels [Ref. 6]. 

In general, users of this approach are faced with the following tasks: finding the 

relevant information in multiple databases, understanding each individual database 

schema, detecting and resolving semantic conflicts, and performing view integration. 

D.        MEDIATOR-WRAPPER ARCHITECTURE 

To address the common problems in data interoperability, database communities 

have attempted to enrich common multi-database architecture with wrappers and 

mediators (Figure 2.1). 

12 
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Figure 2.1. Mediator-Wrapper Architecture 

The federated data sources are attached to the system by wrappers that handle 

technical and data model heterogeneities. A wrapper logically converts the underlying 

data objects to a common information model. To accomplish this logical translation, the 

wrapper converts queries following a common model into a request that the source can 

execute. The wrapper then converts the data returned by the source into the common 

model understood by the system. 

Above the wrappers lie the mediators. A mediator is a software module that re- 

organizes information from one or more sources. A mediator embodies the knowledge 

that is necessary for processing a specific type of information. For example, a mediator 

for "current events" might know that relevant information sources are the CNN and the 

ABC databases. When the mediator receives a query, say for articles on, "earthquake in 
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Turkey", the mediator will know to forward query to those sources, and may also process 

answers before forwarding them to the user. 

Implementing a mediator can be very complicated and time-consuming, but much 

of the coding involved can be automated. Each wrapper is assigned a homogenization 

mediator that transform user queries into terminology understood by the wrapper. If we 

write all this processes in two basic steps: 

Step 1: For each data source, a wrapper exports some information about its source 

schema, data and query processing capabilities. 

Step 2: A mediator centralizes the information provided by the wrappers in a 

unified view of all available data (stored in the global data dictionary), decomposes the 

user query in smaller queries (executable by the wrappers), gathers the partial results and 

forwards the answer to the user. 

The Mediator-Wrapper architecture has several advantages. The specialized 

components of the architecture allow the various concerns of different kinds of users to 

be handled separately. Since mediators typically specialize in a related set of data sources 

with similar data, they typically export Schemas and semantics related to a particular 

domain. The specialization of the components leads to a flexible and extensible 

distributed system. 

The main drawback of this architecture is a result of the fact that the creation 

of mediators is a highly labor-intensive task. Since most potential applications use a 

large number of information sources and new sources are frequently added to the 

system, a large number of mediators is needed - some of which have to be generated 

at the run-time of the system. 
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There is no consensus on how wrappers describe their sources' capabilities, 

nor how much of this information is exposed to the mediator. However this 

Mediator-Wrapper architecture is the most frequently adopted abstraction for the 

information integration. 

E.        INTELLIGENT AGENT-BASED ARCHITECTURE 

In intelligent agent based architecture, each node in the federation has an export 

schema and an import schema. The export schema is used to identify the data objects 

that the node is willing to share with other nodes in the federation. The local import 

schema is simply the union of the export Schemas with all of the other members, and 

contains data object description of information that the other nodes in the federation are 

willing to share with this node. The distributed queries generated at each node are 

formed according to the information present in the local import schema. 

The members of the federation agree on general communication protocols and 

methods for routing queries and data. Processing distributed query requests in federated 

databases is very difficult since we are dealing with multiple independent databases with 

their own rules for query optimization, deadlock detection and concurrency [Ref. 10]. 

Intelligent agents can play a role in this type of environment by supplying a 

knowledge base containing rules for data object conversion, resolving naming conflicts, 

and for exchanging data. The agents would take as its input rules, the distributed query 

and the export/import schema information to generate a result transfer plan. This plan 

would be used to convert the data to any required format acceptable to the requesting site. 

15 



Agents work together in a cooperative manner to solve problems that they could 

not solve their own. Each agent has a knowledge base that has rules used to generate a 

result transfer plan. Figure 2.2 shows the simplified diagram of such an agent. [Ref.9] 

Export 
Schema 

Impart 
Schema 

Distributed Query 

Figure 2.2. Intelligent Agent Architecture. 

A query from outside is submitted to the agent. Then the agent consults with its 

knowledge base and import/export schema in order to generate a response plan. Any 

modification to queries is done at this stage so that they are compatible with the syntax 

and requirements of the local DBMS. For example, the query received may be a 

spreadsheet macro language command, and the required data may reside in a relational 

database. It is the task of the agent to translate these macro commands into a SQL query 

in order to retrieve the required data. The result is sent back according to the response 

plan generated by the agent. 
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F.        SUMMARY 

In this chapter, we have discussed the general architectures for heterogeneous 

distributed multidatabase models. Information systems that provide interoperation and 

integration among multiple databases are called multidatabase systems, federated 

databases, and more generally heterogeneous distributed database systems. The existing 

solutions to interoperation and data integration are global schema integration, federated 

databases, and multidatabase language approaches. 

In the global schema integration approach, multiple database schemas are 

integrated into a unique, global schema. As a result, multiple databases logically appear 

as a single, homogeneous database. This approach is not suitable for frequent changes of 

component data schemas. Hence, global schema integration approach is not preferred for 

the integration of large number of databases. Contrarily, the federated database approach 

does not require a static, wholly global schema integration; instead, integration is realized 

when needed. In multidatabase language approach, there is no schema integration at all. 

The answers to queries in multidatabase language from component databases are 

integrated only (query views). 

A more specific approach to the data integration problem is mediator-wrapper 

architecture, which is a kind of federated database system architecture. In this 

architecture, wrappers logically convert the underlying data objects to a common 
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information model.    Above the wrappers, mediators embody the knowledge that is 

necessary for processing a specific type of information. 

Another type of federated database architecture is intelligent agent-based 

architecture. In this architecture, intelligent agents supply a knowledge base that 

contains rules for data integration, conflict resolution etc. Each agent has knowledge 

base that has rules that are used to generate a result data integration plan. In the next 

chapter, we examine the related work done in this area. 
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III.       RELATED WORK 

In this chapter, we show the related work done about Heterogeneous 

Multidatabase systems. First we introduce the groundbreaking work done by different 

international organizations and companies. In Section A, we show the basics of these 

early projects, and place special emphasis on the two main architectures adopted by these 

projects. In Section B, we introduce the current projects and approaches in this field. 

A.       EARLY PROJECTS IN MULTIDATABASE SYSTEMS. 

In this section, we present a brief history of multidatabase systems, the main 

issues in multidatabases, and the early work of different organizations and companies 

from all over the world. Most of these projects were completed in the late 1980s and 

only deal with the database engineering aspects of Multidatabase systems. We discuss 

two main architectures and classify the multidatabase systems accordingly. Towards the 

end of the section, we explain some of the projects that merit more detailed description. 

1. Motivation to Multidatabase Systems from Classical Databases 

Database systems were proposed as a solution to the problem of shared access to 

heterogeneous files created and used by different autonomous applications and users. 

Database systems are used to provide a homogenous access to information by eliminating 

the difficulties caused by the heterogeneity of information sources. These autonomous 

files were replaced by a centrally defined collection of data called a database.   The 
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authority responsible for the centralized control, or the database administrator, worked to 

integrate the database by defining it and eliminating duplications and heterogeneities. 

The database could then be managed under a centralized control by a system, or database 

system (DBS). The DBS gives each application a unique data profile providing 

consistency and efficiency. 

This idea was successful to a large extent. There are many databases in different 

environments all over the world. However this approach has some drawbacks. There are 

fundamental problems resulting from the sharing of data between users and applications. 

Some of these problems are: 

• The users must explain their needs to an administrator, and this process 

may be very difficult and time-consuming and may require need many 

changes (TO WHAT? WHAT KIND OF CHANGES?). 

• There may be a great variety of structures to represent the users' data, and 

it is very difficult to combine similar structures under the same conceptual 

schema [Ref. 11]. 

• Users tend to prefer to their own naming conventions, and creating a 

global naming scheme that satisfies every user a challenging task 

• Occasionally, the user data may be badly affected as a result of other 

users' manipulations. 

• The administrator is in charge of optimizing the usage of the database, and 

this local optimization may not be aligned with a global goal 
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Briefly, database approach is an attractive idea because it proposes to free users of 

many annoying aspects of data manipulation. However, its downfall lies in the user's loss 

of control over his own data, which ultimately means a loss of user autonomy. 

These drawbacks become more pronounced in modern information technology 

where a user has the capabilities to access even very large collections of data (e.g. 

Internet or LANs of large companies). The data may especially reside in many 

autonomous databases. These databases present heterogeneities similar to that were in 

files triggered the whole database idea. We can think that the database idea should be 

reapplied and we should create a huge (distributed) database involving many small 

databases. This would mean that a centralized control and at least the presence of a 

common conceptual schema, namely global schema is required. As the size of the 

member database number increases, the importance of the drawbacks of classical 

database approach increases as well. This leaded the database groups to prohibit the 

reapplication of this approach. This reason has motivated people to propose the 

multidatabase approach. 

The multidatabase design principles were based on the database approach, but 

intended to maintain its advantages while avoiding or lessening the drawbacks. Thus it 

was proposed that the data the user needed to manage collectively reside in several 

databases without a global schema. As a result, the databases were not integrated, and 

data in different databases began to show duplications and discrepancies in naming and 

data structures as well as inconsistencies the database design was intended to eliminate. 

The user should be able to manipulate data not only in his database, but also to 

combine data from different databases.   These multidatabase manipulations should be 
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simple in spite of the heterogeneity of the system. To obtain these goals, database groups 

developed two main design approaches presented in subsections 3 and 4 of Section A. In 

the next subsection, we will explain the important issues in Multidatabases. 

2.        Important Issues In Multidatabases 

a.        Site A utonomy 

Multidatabases, as opposed to distributed databases, retain complete 

control over local data processing for each DBMS. This quality is called "site 

autonomy". Each site itself determines what information it will share with the global 

system, what global requests it will service, when it will join the multidatabase, and when 

it will stop participating in it. Joining the multidatabase does not modify the DBMS 

itself. Global changes, such as the addition or deletion of other sites, will not affect the 

integrity of local member databases. [Ref. 12]. 

In spite of its desirable aspects, site autonomy brings a large burden to 

global DBAs. Each site has its own local requirements and makes independent local 

optimizations to satisfy those requirements. Because of this independence, a potentially 

large number of participating sites, global requirements and desirable global 

optimizations are likely to conflict with local ones. The global DBA must work on these 

conflicts in initial global system design and ongoing global maintenance. Due to the 

heterogeneity of local DBMSs, the global system may be required to devote global 

resources in order to compensate for any missing local information or function. [Ref. 12]. 
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Some of these problems may be reduced somewhat if the local DBAs agree to cooperate 

and conform to certain global standards. 

b. Differences in data representation 

There are many ways to model real-world objects and represent them in a 

structured database. Since local databases are developed independently with different 

local requirements, a multi database system may have several different models or 

representations for the same or similar objects. [Ref. 12]. On the other hand, a global user 

desires an integrated presentation of global information without any duplication or 

heterogeneity. We can classify these differences as follows: 

• Name differences: The term "synonym" means the same object has 

different representation names in different databases, and "homonym" 

means different objects have the same name in different databases. Each 

local database may have different conventions for naming objects which 

leads to the dilemma of synonyms and homonyms. A global system needs 

to recognize the semantic equivalence of the objects, and then link the 

local names to a single global name. The system must also recognize the 

semantic difference between items, and then map the common names to 

different global names (for semantic equivalence and difference, see 

Chapter-V). 

• Format differences: Format differences include differences in data type, 

domain, scale, and item combinations. For example, a SSN number may 

be  defined  as  an  integer in  on  database while being  defined  an 
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alphanumeric string in another. Sometimes data items may be broken into 

components in one data base while the combination is recorded as a single 

quantity in another (e.g., an address may be represented as a combination 

of street, city, state and zip code or as different attributes for each 

component). Multidatabases typically resolve format differences by 

defining transformation functions between the local and global 

representations (see chapter-V). Some functions may be simple numeric 

calculations, such as converting US dollars to Turkish liras. Others may 

require conversion tables or algorithmic transformations. For example, a 

place may be represented by a unique zip code, or by the combination of 

city and state— in this case a conversion table is required to convert 

city/state pairs to zip codes, or vice versa. 

Structural differences. An object may be structured differently in local 

databases depending on how it is used by a database. While a data item 

has a single value in one database, it may have multiple values in another. 

The same object may be represented as a data value in one place, an 

attribute in an other, and as a relation in a third. 

Missing or conflicting data. Databases that model the same real-world 

object may reveal conflicts in the actual data values recorded. Two 

databases may record the same data item but may assign different values to 

that item. 
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c. Heterogeneous local databases 

Many multidatabases (such as the network, hierarchic and relational 

models) claim to support heterogeneous data models at the local level. [Ref. 11]. Local 

models should be translated to common global model, typically relational. The support 

of local DBMS heterogeneity offers a compromise, writing translation code in exchange 

for improving participation. [Ref. 12]. If the multidatabase developers are willing to write 

enough translation code (which means an extra cost and a decrease in execution 

efficiency), the multidatabase can accept a wide variety of local DBMSs. 

Also, developers should consider that any local functional deficiencies must be 

programmed by global system software. [Ref. 12]. If minimizing translation code cost is 

an important factor, then the variety of DBMSs allowed to join the multidatabase will be 

limited, and only those with interfaces close to the global can be integrated into the 

multidatabase. 

d. Global Constraints 

Because different local databases may represent semantically equivalent 

data or semantically related data, the global system needs a way of specifying and 

enforcing integrity constraints on dependencies and relationships within the various 

databases. [Ref. 12]. These constraints are called global constraints, and additional 

semantic information about the data items involved may be represented by these global 

constraints. 
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Global integrity constraints may be stored in a separate auxiliary database 

or defined as part of the global schema. [Ref. 12]. The query processor checks the 

auxiliary databases during queries to enforce the constraints. 

e. Global query processing 

In multidatabases, global schema is used to submit global query. In the 

case of a multidatabase language, the query itself contains all necessary information for 

the retrieval of local data. [Ref. 12]. Then, the query is decomposed into a set of sub- 

queries- one for each local DBMS that will be involved in query execution. An access 

strategy created by the query optimizer will specify the relevant local databases, what 

each of them will do, and how to combine the results. [Ref. 12]. Then the access strategy 

is executed. 

In query execution, global constraints must also be checked and enforced. 

During the execution, queries may be translated several times as they travel through the 

system layers. Translations allow different languages and representations at different 

layers and also resolve representation differences. 

f. Security 

Achieving security in the distributed system is difficult, with problems 

arising from insecure communication links, varying levels of security at different nodes, 

and the need to support large number of global user types. [Ref. 13]. Site autonomy may 

provide some measure of local security, because local DBAs can restrict the information 
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available to global users. The use of views for global users is also an important security 

measure. 

Accessing multiple systems means entering multiple identification and 

authorization codes. Within a single system, accessing multiple data items can mean 

acquiring multiple authorizations. A global system must automatically manage these 

multiple security requirements while preserving the integrity of the security mechanisms. 

[Ref. 13]. Little work has been done on the specific security requirements of the 

multidatabase environment. 

g. Local node requirements 

To adequately perform global functions, multidatabases require global 

data structures and Software modules. [Ref. 12]. Although site autonomy assures local 

DBMSs' integrity while joining a multidatabase, the local machine will have to share 

some of the global storage and processing requirements. Some multidatabases distribute 

the load evenly over all participating sites and some use server machines to perform most 

of the global functions. Whit this arrangement, small limited capacity machines can 

participate in the multidatabase. 

Global data structures and global software functions vary among multidatabase 

systems. The most common data structures include global schema, auxiliary databases 

for global constraints, space for intermediate query results, and temporary workspaces for 

global functions. [Ref. 12]. Common software functions do translations between local 

and global languages, transformations between local and global information 

representations, query processing and optimization, and global system control. 
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3.        Design Architectures 

During the first developmental stages of multidatabases, two main designs, global 

Schemas and multidatabase languages, were adopted by database groups, and current 

projects still use these approaches. Initially, the global schema approach was used in 

multidatabase design and continues to be a popular choice for many projects, whereas 

the multidatabase language approach was developed in partial response to the problems 

inherent in the global schema approach, and also to address the need for simpler overall 

system architecture. [Ref. 12]. A third approach, federated database systems, was 

developed to overcome the problems of a global schema. 

a. Global schema 

The global schema approach to multidatabases is a direct descendent of 

distributed databases. [Ref. 12]. The global schema is just another layer, above the local 

external Schemas, that provides additional data independence. Two major differences 

between distributed databases and multidatabases are: (1) in multidatabases, the global 

system cannot obligate local systems to conform to any standard schema design (local 

Schemas are developed independently), and (2) the global schema cannot control changes 

involving local Schemas. [Ref. 12]. Another major difference is that a multidatabase 

global schema may integrate local Schemas from multiple data models while a distributed 

database accepts a unique data mode. 

The global schema approach has the benefit of making global access a 

user-friendly process. [Ref. 12].   Global users essentially see a single, but still large, 
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integrated database. The global interface of the database is independent from all the 

heterogeneity in local DBMSs and data representations. The global schema is usually 

replicated at each node for efficient user access. 

Global schema design: Global schema design takes the individually 

developed local Schemas, resolves any semantic and syntactic differences among them, 

and after that creates an integrated summary of all their information. This is also called 

as view integration. 

As a result of differences in representations and interdependencies 

between data at different nodes, this process of integration is more complex than the 

simple union of the input Schemas. [Ref. 12]. The common techniques for integrating 

multiple, distinct Schemas are covered in chapter-VI. But during the first development 

era of multidatabases, schema integration process was very human-labor intensive. 

Global schema maintenance: A global schema can be very large, so it's very difficult or 

impossible to replicate it at nodes which have limited storage capabilities. The popularity 

of personal computers and small DBMSs reside on them may want to join the 

multidatabase system and this constitutes an important problem. Some systems only 

replicate the global schema at specified server nodes to compensate this problem. 

However, "this means queries cannot be processed at query origin nodes which don't 

have global schema" [Ref. 12]. 

Global DBAs must also maintain the global schema in the face of arbitrary 

changes to local Schemas" [Ref. 12]. Changes to local Schemas must be propagated to the 

global schema immediately.  "The integration techniques used in global schema design 
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and the types of changes in local data representations can complicate the mapping of 

changes to the global schema" [Ref. 12]. 

b. Multidatabase language 

The multidatabase language approach was an attempt to resolve some of 

the problems stemmed from the global schema approach, such as "up-front knowledge 

required of DBAS, development time to create the global schema, significant 

maintenance requirements, and processing/storage requirements on local nodes" [Ref. 14]. 

A multidatabase language system puts most of the integration responsibility on users 

rather than administrators, but also eases their tasks by giving them many support 

functions and by providing more control over the information. Most multidatabase 

languages are relational, similar to SQL in standard capabilities, but the functions are 

extended significantly. 

"Many of the language extensions beyond standard database capabilities 

are involved with manipulating data representations" [Ref. 12]. Since there are 

representation differences in local databases, when a user submits a query, the language 

must be capable of transforming source information into the representations that the user 

can understand. "Multidatabase language system users must have a means to display 

what information is available from various sources" [Ref. 12]. The user is supposed to 

know what information is required and where it probably resides. Otherwise, the 

magnitude of the information available globally will make finding necessary data an 

overwhelming task. The language should provide the ability to limit the scope of a query 

to the pertinent local databases [Ref. 12]. 
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In summary, the multidatabase language approach passes the burden of 

integration to the users and local DBAS from global DBAs. Users must have some 

global knowledge of representation differences and data sources, but only about the 

information actually used. "Multidatabase language systems trade a level of data 

independence (the global schema hides duplication, heterogeneity, and location 

information) for a more dynamic system and a greater control over system information" 

[Ref. 12]. 

c. Federated Databases 

A federated database is a loosely coupled set of its components [Ref. 15]. 

In federated database systems, there is a federation of loosely coupled databases without 

a global schema. The main principles for a federation establishment are as follows: 

• To establish a federation, each database presents a schema called export 

schema. This schema is either the "actual conceptual schema (in this case, 

member database permits all its data to be used) or a derived schema 

hiding the private data" [Ref. 16]. 

• Data to be manipulated by a user are defined by an import schema. "This 

schema may group data from several export Schemas" [Ref. 17]. 

• There are mechanisms called derivation operators to produce the import 

schema. "There is also a mechanism for negotiation between databases 

along a dedicated protocol" [Ref. 18]. 

• "Each federation has a single federal dictionary, which is a distinguished 

component whose information province is the federation itself [Ref. 17]. 
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An import schema is an external schema. A private schema is either the 

internal logical schema or the conceptual schema at the multidatabase level. An export 

schema may be considered equivalent to a conceptual schema at the multidatabase layer. 

However "it does not seem to be specified in the federated architecture whether the user 

may manipulate the export schemas directly, separately or jointly" [Ref.17]. 

"The key words for the federated approach are indeed autonomy and 

additionally cooperation in interdatabase sharing" [Ref.17]. The global schema 

multidatabase approach also has these goals, but it requires a global data dictionary. A 

conceptual schema at the multidatabase layer (Federative layer) may be termed an export 

schema. Instead of a unique centralized schema, negotiation protocols work between 

exports and imports schemas of federation. 

4. A General Review Of Early Projects In Multidatabase Field 

In this subsection, we show the early multidatabase projects reported in the 

literature. Tables 3.1 through 3.3 review most of the early projects took place in the late 

eighties. These projects come from a variety of countries, institutes and companies. 

Some of them are just research projects and others are commercial systems. The variety 

of work indicates the given importance to this area at this time. The tables were taken 

from a yearly publication of IEEE Computer Society in 1994 [Ref. 19]. Some of the 

projects take place in tables is introduced in subsequent subsections. The tables compare 

high-level details of the projects (organizations, global data model and system emphases 

or key features). 
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System Name/Organization Global Data 
Model 

System Emphases and Key Features 

ADDS (Amoco Distributed 
Database System), Amoco 
Research Center 

Extended 
Relational 

Comprehensive function, powerful user 
interface, global constraints 

Dataplex, General Motors 
Research 

Relational Query decomposition and optimization 

DQS (Distributed Query 
System), CRAI, Italy 

Relational Query optimization 

EDDS (Experimental 
Distributed Database System), 
University of Ulster 

Relational Small machines can join system 

HD-DBMS (Heterogeneous 
Distributed DBMS), UCLA 

Entity- 
relationship 

Global access path information, external 
views in multiple data models 

JDDBS (Japanese Distributed 
Database System), Japan 
Information Processing 
Development Center 

Relational Based on a broadcast network 

Mermaid, Unisys Relational Query optimization 
Multibase, Computer 
Corporation of America 

Functional Comprehensive function 

Multistar, Consortium headed 
by CRAI, Italy 

Relational Query processing, ability to link to other 
multidatabases 

NDSM (Network Data 
Management System), CRAI, 
Italy 

Relational Query optimization 

Preci, University of Aberdeen Relational Replicated data, nodes can support different 
levels of global function 

Proteus, British universities Abstracted 
conceptual 

Star network topology, multiple global access 
languages 

Scoop, Universities of Paris 
and Turin 

Entity- 
relationship 

Study mapping algorithms between system 
levels 

Sirius-Delta, ENRIA, France Relational Translations to/from pivot system (global data 
model/language 

Unibase, Institute for 
Scientific, Technical, and 
Economic Information, Poland 

Relational Global constraints 

XNDM (Experimental 
Network Data Manager), 
National Bureau of Standards 

Relational Data translations, use of server nodes for 
global processing 

Table 3.1. Global Schema Multidatabase Projects [Ref.9] 
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System Name/Organization Global Data 
Model 

System Emphases and Key Features 

Heimbigner, University of 
Colorado 

Object 
oriented 

Language support for data transformations, 
negotiation protocol for input schema creation 

Ingres/Star, Relational 
Technology Inc. 

Relational Can define multiple import Schemas at a node 

Superdatabases, Columbia 
University 

Relational Hierarchical system structure, concurrency 
control 

Table 3.2.  Federated Database Projects [Ref.9] 

System Name/Organization Global Data 

Model 

System Emphases and Key Features 

Calida, G'L'h. Research Labs Relational Query optimization 

Hetero, Felipo Carino, 
California 

Extended 

relational 

Powerful user interface 

Linda, Technical Research 
Center of Finland 

Relational Close to being an interoperable system rather 

than a multidatabase 

MRDSM (Multics Relational 
Data Store Multiple) INRIA, 
France 

Relational Comprehensive function, many language 

features, global constraints 

Odu, University of Wales Entity- 

relationship 

Small machines can join systems 

SWIFT (Society of Worldwide 
Interbank Financial 
Telecommunication, SWIFT, 
Europe 

Relational Transaction structure and processing 

VTP-MDBS (Vienna Integrated 
Prolog-Multidatabase System) 
Vienna Technical Uiversity 

Relational Global language is Prolog 

Table 3.3. Multidatabase language system projects 
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The majority of systems under consideration are global schema multidatabases. 

The reason is that, this approach was a good initial step from classic distributed databases 

to heterogeneous multidatabases. So most of the organizations have firstly concentrated 

on this issue and came up with some projects (see Table 3.1). However, problems of size 

and complexity made global schema multidatabases impractical for large distributed 

systems. Since the trend turned toward more interconnection (by development of internet 

and large interconnected systems) at that time, multidatabase language systems - the 

other major design approach - seemed more practical and attracted the interest of some 

organizations. Thus some projects have been started and database groups were canalized 

to this issue. These projects are reviewed in Table 3.2. We reviewed the early projects 

on Federated Databases in Table 3.3. 

Among the early projects, MRDSM deserves a special place. Because the 

functions defined in this project constituted the basement for other projects. 

a. MRSDM (Multics Relational Data Store Multiple) 

MRDSM is multidatabase language system project sponsored by INRIA in 

France. "MRDSM allows integration of various relational database systems" [Ref.20]. 

The integration is performed largely at two levels. First, database definition of integrated 

relations is described in the MRDSM data definition language, and there is also a 

multidatabase data manipulation language available to users of the system. "The 

database definitions of the integrated view of cooperating databases are created 

dynamically by multidatabase administrator and either exist for the duration of the user's 

session with MRDSM or they are stored in the directory for further use" [Ref.21]. 
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The data manipulation language allows users to combine data in different 

databases, to transform the actual attribute values into user-defined value types 

dynamically, to retrieve data from different databases in the same query, and aggregate 

data from different databases using various built-in functions. [Ref.20] 

"The data definition language includes capabilities to define the data that a 

cooperating database willing to share and define user access rights" [Ref.22]. For a 

collection of databases being integrated by MRDSM, the database administrator assigns a 

unique name called a multidatabase name. 

On a set of relations integrated by MRDSM, the database administrator 

can define three types of dependencies: manipulation, privacy, and equivalence. "A 

manipulation dependency triggers processing in one database when processing is 

conducted in another database" [Ref.20]. As an example, an insertion of a tuple in some 

relation may trigger insertion of the same tuple into some other relation. "A privacy 

dependency triggers a check of the user's rights for the database to be accessed" [Ref.20]. 

"An equivalence dependency identifies for each database to be accessed its primary or 

candidate keys" [Ref.20]. Equality of primary keys from two separate relations indicates 

that the same real objects are stored in these relations. 

"The query and data manipulation languages of MRDSM are based on a 

tuple calculus and patterned after QUEL" [Ref.21]. It includes retrieve, modify, store, 

delete, copy, move, and replace statements. To manipulate one or more databases, a user 

has to submit an open command that includes each database to be manipulated along with 

the access mode (shared or exclusive). To realize access of several databases in one user 
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query, several new concepts are proposed in MRDSM. Among them are: multiple 

identifiers, and semantic variables. 

"A multiple identifier refers to the same relation name at two different 

sites" [Ref.20]. It is assumed that if two relations at two different local databases have 

the same relation name, then they contain at least semantically related information. For 

example, if a relation at one site named 'ship' and a relation at the other site also is called 

'ship', then both relations probably contain (but not necessarily the same) information 

about the ships. "A semantic variable allows user to identify several relations that 

contain semantically relevant information with one name in the user query" [Ref.21]. 

Users of MRDSM are capable of defining dynamic attributes for either 

duration of the query or the duration of the user's session with MRDSM. A dynamic 

attribute is a function definition on actual attributes that the user is authorized to access. 

Finally, by using copy and move commands, relations can be copied and moved form one 

site to another. Users may create a relation as a result of their query and move it to an 

indicated data location. [Ref.20] 

The MRDSM includes a rich function set. While some of these functions 

are intended as general notions, others are specific to the relational data. These functions 

are basically 

• the definition and alteration of multidatabases, 

• "Cooperative data definition: single statement creation (alteration, drop,..) 

of a relation in several databases, import of data definition, etc." [Ref. 17]. 
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Classical retrievals and updates of relations, however "being in different 

databases,  called  elementary multidatabase  queries  in  the  MRDSM 

terminology" [Ref. 17], 

"So-called multiple queries, performing relational operations on sets of 

possibly heterogeneous tables" [Ref. 17]. 

Possibility of multiple identification of data objects bearing the same 

name, to deal with data duplication and fragmentation [Ref.23]. 

Possibility of dynamic unification of heterogeneous names of data objects 

to deal with name heterogeneity [Ref.24]. 

Implicit joins for queries to databases with similar data, but different 

decomposition into relations [Ref.25]. 

Dynamic attributes, for "ad-hoc transforms of heterogeneous data values to 

a user defined basis" [Ref. 17]. 

Various new built-in functions.  For instance, "for transformation of data 

names into data values subject to relational operations (names in one 

database may correspond to a data value in another)" [Ref. 17]. 

View definition, using the (multidatabase) query modification technique 

Multidatabase external schema definition 

Interdatabase queries for data flow between databases. 

"Auxiliary    objects    like    manipulation    dependencies,    equivalence 

dependencies and procedures (transactions, stored queries .... )" [Ref.25]. 
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In summary, MRDSM is a heterogeneous database system that is able to 

integrate pre-existing relational databases. This system allows users to join data from 

different relations in different databases, to define dynamic attributes, and to dynamically 

aggregate data from different relations. From this point of view, it was the most 

complete prototype built so far at that time. On the other hand, "MRDSM does not deal 

with physical data distribution, nor with the issues of query optimization in the 

heterogeneous environment" [Ref.20]. 

b. Sybase 

This system was designed by Sybase Inc. in Berkeley, California. It was a 

high performance relational system, and it is still available on SUN workstations. The 

implementation of Sybase on the SUN may be entirely on one machine or the front-end 

software (client) on one machine and the server software on another. Several front-ends 

may share a server and a front-end may access several servers [Ref.20]. This first version 

of Sybase was not a distributed system, however the distributed version was released in 

1988. 

Sybase language is an extension of SQL, called Transac-SQL. Also, one 

may use a more user friendly interface called Visual Query Language (VQL). Transac- 

SQL and VQL were the first multidatabase languages on the market. They have several 

interesting features: 

• "The user may qualify the relation name, let it be T, with the database 

name, let it be B using the form B.T. Thus one may formulate elementary 

multidatabase queries" [Ref.20]. 
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• The user may define multidatabase views, but not virtual databases. 

• The queries may include implicit joins. Unlike in MRDSM, they are 

however "limited to relations with a single connection through primary or 

foreign keys" [Ref.20]. 

• "The user may formulate interdatabase queries using multidatabase 

INSERT and UPDATE statements. The latter statement then takes values 

in a table and puts them accordingly into a target table" [Ref.20]. These 

statements map column names only by order of their enumeration in the 

SELECT clause, while MRDSM also allows columns to be mapped by 

name. 

• The user may define interdatabase manipulation dependencies. Thus "a 

manipulation of one database, may trigger that of another" [Ref.20]. The 

length of the chain is however limited to 8 elements, to avoid infinite 

cycles. 

• In the distributed version of Sybase, the language allows multiple queries 

to be formulated. 

The differences in the user interface of Trans-SQL and VQL with respect 

to these functions, compared to MRDSM and MSQL are as follows: 

• The user opens explicitly only one database at a time, through USE 

<database name> statement. This database constitutes the default scope 

for table and column names. All other databases remain however, 

available to the user, provided he has the access rights.  The access to a 
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database is triggered by the use of its name as the prefix.   In contrast, 

"MRDSM allows the user to open explicitly several databases and does not 

allow other databases to be used" [Ref.21].   The database name is then 

required as the prefix only if table names conflict. 

• "The multiple queries will most likely be generated through the new 

statement FOR EACH <table names> <elementary query>" [Ref.20]. 

This is somewhat more procedural than the use of multiple identifiers or 

semantic variables in MRDSM. It also makes the "query formulation less 

open to the local autonomy" [Ref.20]. 

Sybase is an important system that was widely used and selected by 

Microsoft to become the Microsoft system for IBM-PS2, replying to OS2/DB of IBM. It 

was also selected by Apple for Mac SE and Mac-2 and by Ashton-Tate to replace the 

famous Dbase [Ref.20]. 

c. Empress V2 

This system was made by Rhodius Inc, in Toronto, Canada and it was one 

of the first well developed multidatabase language systems. The version described below 

is V2, following the "classical" version 1. Unlike Sybase, Empress V2 is a "distributed 

system that runs on a number of computers over the Ethernet network: Sun, Vax, Apollo, 

IBM-PC/PS and etc." [Ref.20]. 

It uses a multidatabase extension of SQL that was as follows: 
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• Table names in a query may be prefixed with database names. The 

database names may themselves be further prefixed by multidatabase 

names that are ultimately the site names. 

• Several databases may be open simultaneously. 

• The user may define multidatabase views and virtual databases. Both views and 

virtual databases may be distributed. "A virtual database is manipulated as a 

single actual one, with location transparency, except for some updates" [Ref.20]. 

• "Empress V2 supports distributed updates using two phase locking and 

two phase commitment" [Ref.20]. 

Empress V2 has multidatabase features that Sybase has not and vice versa. 

Using multidatabase names in front of database names, in particular allows the resolution 

of name conflict between database names and also using database names with table 

names helps to resolve the naming conflicts between entity and relation names. 

An auxiliary, but worth to be mentioned feature of Empress V2 is that, for 

the first time it supported multimedia data in multidatabase systems. "These data may be 

declared as a particular "bulk" column of a table" [Ref.20]. They may then be interpreted 

as text, image or voice data. This feature was an opening towards future multidatabase 

and multimedia systems and towards the interoperability with information systems other 

than DBSs. 
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d. Distributed Ingres 

Distributed Ingres, also called Ingres/Star, was a software layer to Ingres 

systems and, in the future, to other types of DBSs, supporting an SQL interface. The 

component providing this interface is called "gateway". Ingres is one of first example of 

a federated database system. 

There are not any interdatabase dependencies in Ingres architecture. Thus, 

the consistency of replicated data cannot be guaranteed, unlike in Sybase. 

The main features of Ingres/Star are as follows: 

• The system allows the definition of any number of the external 

multidatabase Schemas over subcollections of SQL databases. "The virtual 

database defined by this schema is called a distributed database (DDB) and 

its elements are called links" [Ref.20]. Once the DDB is created, it is used 

as an actual Ingres database, except for update limitations. The DDBs may 

in particular share an actual table or database. 

• In fact, if a DDB creation is requested over n databases, then it is created 

over n+1 databases [Ref.20]. The latter database is a hidden actual 

database created at the node of the DDB schema definition. "This 

database is named upon the DDB and allows a DDB user to transparently 

invoke the CREATE TABLE statement" [Ref.20]. These tables may be 

updated, altered etc. 

• "The system does not allow the user to directly formulate multidatabase 

queries to actual databases or, more precisely, to their export Schemas" 

[Ref.20]. The reason for this is mainly implementation dependent, namely 
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the necessity of a dictionary entry, created when a link is declared. "The 

only way to formulate an ad-hoc query is to define a DDB whose links are 

the addressed tables and formulate the query to the links" [Ref.20]. The 

links may be declared temporary in which case the DDB is automatically 

dropped. Otherwise, the user must drop the DDB himself or keep it for 

further needs. 

In both cases, the additional manipulations required clearly make 

Ingres/Star less flexible for ad-hoc multidatabase queries than Sybase and Empress. In 

addition there is a danger of system pollution with DDBs and the underlying hidden 

actual databases, created for a particular query and then forgotten. [Ref.20] 

e. Oracle V5 

In this version, Oracle has become multidatabase system and adopted a 

multidatabase language system architecture. The creation of several databases at the same 

site and the formulation of elementary multidatabase queries were allowed in this 

version. The Oracle multidatabase language was termed SQL*PLUS. Unlike in Sybase 

or Empress, the database name does not prefix the table name, but postfixes it, after the 

character '@\ This capability allows the resolution of the name conflict, avoiding the use 

of the database name. "The user has also particular statements defining aliases for table 

names and for database names" [Ref.20]. This process is called database links (but it is 

different from the data link defined in Ingres/Star). 

'The language offers also statements for interdatabase queries unknown to 

other commercial systems" [Ref.20] and largely similar to the corresponding ones in 
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MRDSM.   All the multidatabase manipulations are moreover available for distributed 

databases, through the distributed database management component SQL*STAR. 

/ Mermaid 

This system was developed in the System Development Group of 

UNISYS. While it was initially intended as a classical distributed DBS, it evolved 

towards the federated architecture. Its overall features are like those of Ingres/Star and 

so we will not discuss it detailed here. However, there are numerous differences at the 

implementation level. In particular, "Mermaid used an original pivot language designed 

for easy translation towards heterogeneous relational languages" [Ref.26]. 

g. Calida 

This system was developed in GTE Research Laboratories. The 

operational version was designed for the management of numerous databases of GTE, 

mostly the relational ones. The main features of the system are as follows: 

• "Calida makes it possible to access relational and Codasyl-like databases" 

[Ref.20]. The internal logical schema and the corresponding manipulation 

are generated through the original rule processing system. This system 

provides a particularly flexible interface to data model heterogeneous 

databases. 

• The multidatabase manipulation language is DELPHI not SQL. DELPHI 

language is used as a final language for the sophisticated user and as an 

intermediate language for a natural language for interface.    DELPHI 

45 



allows the formulation of elementary multidatabase queries, including the 

updates, where database names may be used as prefixes to solve name 

conflict. The query decomposition is carefully optimized, using field 

statistics gathered by the system [Ref.20]. Calida moreover allows the 

definition of external Schemas through the usual query modification 

technique. 

"The system supports the implicit joins that, in particular, may concern 

columns in tables in different databases" [Ref.20]. This feature existed only in MRDSM, 

as it requires the definition of equivalencies between domains or tables of different 

databases. In the GTE system, the corresponding equivalence dependencies are stored in 

a so-called global dictionary. The algorithm for the query completion is that "it searches 

for a minimal spanning tree over the intersection of the non-connected query graph and 

the connected database graph whose nodes are relations and edges are connections 

through keys". However, the algorithm is limited to the case of a single connection 

between two relations (acyclic graphs). If there are multiple connections, the user is 

asked to make a choice. "One advantage is a fast recursive algorithm for the spanning 

tree edges computation" [Ref.20]. 

h.        DQS/Multistar 

The Distributed Query System (DQS) prototype was a multidatabase 

system developed by CRAI, Italy and a sample of global schema multidatabase system. 

The DQS prototype leaded to a commercial version called Multistar.    It "allows 
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multidatabase retrievals from MS/VS, IDMS, AD ABAS and RODAN databases, as well 

as from standard VSAM files" [Ref.27]. The objects of these databases are presented as 

relations through dedicated mapping commands. The retrievals are formulated in SQL 

over so-called global schema in DQS terminology. However the DQS global schema is 

in fact an import schema, as several different Schemas may be defined which may be 

partial, and they may overlap. [Ref.27] 

These Schemas may also include views. Views are the principal data 

abstraction mechanism for aggregations and generalizations in DQS. 

DQS had several interesting features, especially its algorithm for SQL 

query decomposition. Views are dealt with using the query modification technique. 

The query is represented as a tree subject to the algebraic transformations 

to reduce intermediate relations. A heuristic algorithm is also used to produce the query 

tree optimized with respect to data movements between the sites. For execution, this tree 

is finally transformed to a Petri Condition-Event net. [Ref.27] 

B.        CURRENT PROJECTS IN MULTIDATABASE SYSTEMS 

There are currently many research projects on data integration. In this subsection, 

we only briefly mention a sample of them that have been well prototyped and 

demonstrated: Tsimmis at Stanford University, Garlic at Almaden Research Laboratories, 

DISCO at Inria (France), and finally Infomaster at Stanford University. Other projects 

that we can consider important but we didn't mention in our thesis are Information 
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Manifold at AT&T Research Laboratories, Ariadne at University of South California, 

Strudel at AT&T Research Laboratories, and Whirl at AT&T Research Laboratories. 

1.        TSIMMIS 

Tsirnmis is a joint project of Stanford and IBM Almaden Research Center. As an 

acronym, TSIMMIS stands for "The Stanford-IBM Manager of Multiple Information 

Source". The goal of the Tsirnmis Project is to develop tools that facilitate the rapid 

integration of heterogeneous information sources that may include both structured and 

unstructured data. In this subsection we show the system components that extract 

properties from unstructured objects, that translate information into a common object 

model, that combine information from several sources, that allow browsing of 

information, and that manage constraints across heterogeneous sites. 

The goal of the Tsirnmis project is to provide tools for accessing, in an integrated 

fashion, multiple information sources , and to ensure that the information obtained is 

consistent. 

a. System Architecture 

Figure 3.1 shows the general architecture of the Tsirnmis system.   We 

describe the main components in the following subsections. 

1. Translators and Common Model: Figure 3.1 shows a 

collection of heterogeneous information sources. These sources may be any combination 

of databases, object stores, knowledge bases, file systems, digital libraries etc.   Above 
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each sources a translator (or wrapper) resides which logically converts the data object in 

the source to a common information model. To make this conversion, the translator first 

converts the coming query in the form of common information model into a request 

query form that the source can execute. After the execution of query in the source, the 

result is again converted into common model. 

Class&i/Extact» 

Figure 3.1. TSIMMIS Architecture. 

For the Tsimmis project, a simple self-describing object model 

called Object Exchange Model (OEM) is adopted.   "OEM allows simple nesting of 

objects" [Ref.28]. We explain the OEM in subsection b. But the idea is that: each object 
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and their subobjects are described by labels associated with them.   For example, the 

following objects represent a country: 

< name-of-country, str, Turkey> 

where the string "name-of-country" is a human-readable label, "str" is string type value, 

and Turkey is the value of the object. 

To request OEM objects, Tsimmis group has also developed a 

query language called OEM-QL. QEM-QL is described in subsection b, but basically it is 

an "SQL-like language extended to deal with labels and objects nesting" [Ref.28]. 

2. Mediators: Above the translators in Figure 3.1 lie the 

mediators. A mediator is a "system that refines in some way information from one or 

more sources" [Ref.29]. "A mediator embeds the knowledge that is necessary for 

processing a specific type of information" [Ref.28]. For example, a mediator for "current 

events" might know that relevant information sources are the CNN and the ABC 

databases. When the mediator receives a query, say for articles on "earthquake in 

Turkey", it will know to forward query to those sources. "The mediator may also process 

answers before forwarding them to the user" [Ref.28]. For example, it can convert the 

date information into a common format or eliminate articles that duplicate information. 

While data conversion is simple, eliminating duplicate information 

requires real intelligent. In Tsimmis, "relatively simple mediators based on patterns or 

rules are forced" [Ref.20]. The goal of the Tsimmis project is "to automatically or semi- 

automatically generate mediators from high level descriptions of the information 

processing they need to do" [Ref.28].   This is feature in the architecture is shown in 

50 



mediator generator box in the Figure 3.1. Similarly, a translator generator is provided 

to "generate OEM translators based on description of the conversions that need to take 

place for queries received and results returned" [Ref.28]. 

3. System and User Interfaces: Mediators export an interface 

of information sources that is identical to that of translator to their users. Both translators 

and mediators take as input OEM-QL queries and return OEM objects. Hence, "end 

users and mediators can obtain their information either from translators and/or other 

mediators" [Ref.20]. This approach allows "new sources to become useful as soon as a 

translator is supplied, it allows mediators to access new sources transparently, and it 

allows mediators to be "stacked," performing more and more processing and refinement 

of the relevant information" [Ref.28]. 

End users (on top of Figure 3.1) can access information either by 

writing applications that request OEM objects, or by using one of the generic browsing 

tools that have been developed in the project. The browsing tool provides access through 

Mosaic or other WWW viewers. The user writes a query on an interactive worldwide- 

web page, or selects a query from a menu. The answer is received as a hypertext 

document. This tool provides easy interaction with heterogeneous information sources. 

4. Labels and Mediator Processing: It is important to note 

that "there is no global database schema, and that mediators can work independently" 

[Ref.20]. To build a mediator it is only necessary to understand the sources that the 

mediator will use. In fact, "it is not even necessary to fully understand the sources used" 

[Ref.20].  For example, returning to our "current events" mediator, suppose one source 
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exports objects with sub-objects labeled by title, date, author, and country. The mediator 

might always pass the author and country sub-objects to its client with no additional 

processing. Now let's suppose that, a second source provides topic and date sub-objects. 

The mediator will convert the date information from both sources into a common format, 

and it will also convert a mediator query about the subject of an article into the proper 

topic or title queries that will be sent to the sources. 

When a mediator simply passes sub-objects to its clients (in our 

example these sub-objects are author and country), "it might append the source name to 

the labels so that the client can interpret the objects correctly" [Ref.20]. For example, a 

mediator sub-object might have label ABCNews.author, which means this author is from 

ABC source and follows its conventions for authors. Another object might have the label 

CNN.author. 

The idea is that "a mediator does not need to understand all of the 

data it handles, and no person or software component needs to have a global view of all 

the information handled by the system" [Ref.28]. 

5. Constraint Management: Another important component in 

the Tsimmis architecture is constraint management, illustrated in Figure 3.1 by a 

Constraint Manager and two Local Constraint Managers. "Integrity constraints specify 

semantic consistency requirements over stored information; such constraints arise even 

when the information resides in loosely coupled, heterogeneous systems" [Ref.28]. 

Constraint management in the distributed, heterogeneous environments addressed by 

Tsimmis is more difficult and complex than constraint management in centralized 

systems: "Transactions across multiple information sources usually are not provided, and 
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each information source may support different capabilities for accessing and monitoring 

the data involved in a constraint" [Ref.20]. 

Since in a loosely coupled environment it is generally not possible 

to guarantee that every user or application sees consistent data every time it interacts with 

the system, the Tsimmis constraint manager enforces constraints with weaker guarantees 

than what a centralized system may provide. Tsimmis makes "relaxed" guarantees, e.g., 

a constraint is true from 8am to 5pm every day, or a constraint is true if some 'Flag' is set. 

Ensuring relaxed consistency is especially challenging because one now has to deal with 

the timing of actions and of guarantees. However, the advantages of being able to handle 

relaxed guarantees in heterogeneous systems are significant; knowing precisely what 

holds and what does not hold, and when, will clearly lead to more trustworthy systems. 

[Ref.28] 

6. Classification and Extraction: The final component of the 

Tsimmis architecture is the Classifier/Extractors shown at the bottom of Figure 3.1. 

Many of the important information sources are completely unstructured, consisting of 

plain files or incoming bit strings. Generally it is possible to automatically classify the 

objects in such sources (e.g., is the plain file a spreadsheet, a text file, or an image file?), 

and to extract key properties (e.g., creation date, author). The Classifier/Extractor 

performs this task. "The information collected by the Classifier/Extractor can then be 

exported (via a translator, if necessary) to the rest of the Tsimmis system, together with 

the raw data" [Ref.20]. 
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b. Object Exchange 

As described before, the Object Exchange Model (OEM) is used as the 

unifying object model for information that will be processed by Tsimmis components. 

OEM is used for the processing of logical queries, and for providing results to the user. 

Each object in OEM has the following structure: 

Label Type Value Object-ID 

Label: A character string indicating what the object represents. For each 

label "a translator or mediator exports, it should provide a "help" page that describes (to a 

human) the meaning and use of the label" [Ref.28]. These help pages can be very useful 

during exploration of information sources, and for deciding how to integrate information. 

Type: The data type of the object's value. Each type is either a basic data 

type such as integer, string, real number, etc., or the type set or list. 

Value: A variable-length value for the object. 

Object-ID: A unique variable-length identifier for the object. 

Suppose an object representing a ship has label ship and a set value. The 

set consists of three sub-objects, a name, a country, and a photo. All four objects are 

exported by an information source via a translator, and they are examined by a client. The 

only way the client can retrieve the ship object is by posing a query that returns the object 

as an answer. If the data type of an object is "set", then the values will be references to 

sub-objects in this set.   So in our example, the value field of our OEM object will be 
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{ol,o2,o3} where oi is the reference to corresponding sub-object.   Thus, on the client 

side, the retrieved object will look like: 

<ship, set, { ol,o2,o3}, idO > 

ol: location of <name, str, TCG Doganay, idl> 

o2: location of <country, str, Turkey, id2> 

o3: location of <photo, bitmap, "some bits", id3> 

"The primary reason for choosing a very simple model in Tsimmis project 

is to facilitate integration" [Ref.28].   "Simple data models have an advantage over 

complex models when used for integration, since the operations to transform and merge 

data will be correspondingly simpler" [Ref.20]. 

c. Summary 

The basic aspects of Tsimmis project are as follows: 

• Tsimmis focuses on providing integrated access to very diverse and 

dynamic information. The information may be unstructured or semi- 

structured, often having no regular schema to describe it. "The 

components of objects may vary in unpredictable ways (e.g., some pictures 

may be color, others black and white, others missing, some with captions 

and some without)" [Ref.28]. Moreover, the available sources, their 

contents, and the meaning of their contents may change frequently. 

• Tsimmis assumes that "information access and integration are intertwined" 

[Ref.20]. "In a traditional integration scenario, there are two phases: an 

integration phase where data models and schemas (or parts thereof) are 
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merged, and an access phase where data is fetched" [Ref.28]. In Tsimmis 

environment, it may not be clear how information is merged until samples 

are viewed, and "the integration strategy may change if certain unexpected 

data is encountered" [Ref.20]. 

• Integration in Tsimmis environment requires more human participation. In 

the extreme case, integration is performed manually by the end user. For 

example, a stock broker may read a report saying that IBM has named a 

new CEO, then retrieve recent IBM stock prices from a database to deduce 

that stock prices will rise. In other cases, integration may be automated by 

a mediator, but only after a human studies samples of the data, determines 

the procedure to follow, and develops an appropriate specification for the 

mediator generator. [Ref.28] 

In summary, the Tsimmis goal is not to perform fully automated 

information integration that hides all diversity from the user, but rather to "provide a 

framework and tools to assist humans (end users and/or humans Programming integration 

software) in their information processing and integration activities" [Ref.28]. 

2. Garlic 

Garlic is a project of IBM Almaden Research Center. It is not an acronym. The 

team decided to give this name to their project, "because most members really like garlic 

and enjoy their laboratory's proximity to the Gilroy garlic fields!" [Ref.31] 
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"The goal of this project is to develop a system and associated tools for the 

management of large quantities of heterogeneous multimedia information" [Ref.31]. 

Garlic allows traditional and multimedia data to be stored in a variety of existing data 

repositories, including databases, files, text managers, image managers, video servers etc. 

"The data is seen through a unified schema expressed in an object-oriented data model 

and can be queried and manipulated using an object-oriented dialect of SQL" [Ref.32]. 

The Garlic architecture is extensible to new kinds of data repositories, and access 

efficiency is addressed by "a middleware query processor that uses database query 

optimization techniques to exploit the native associative search capabilities of the 

underlying data repositories" [Ref.31]. 

In the subsection a, we show the general Garlic architecture and its components. 

We describe the Garlic data model and query language in subsection b, finally we 

summarize the Garlic project in subsection c. 

a.        System Architecture 

Figure 3.2 ([Ref. 12]) shows the overall architecture of the Garlic system. 

At the leaves of the figure are a number of data repositories (relational and non-relational 

database systems, file systems, document managers, image managers, video servers etc). 

A repository wrapper resides on each data repositories which translates information about 

data Schemas and queries between Garlic's internal protocols and that repository's native 

protocols. "Information about the unified Garlic schema, as well as certain translation- 

related information needed by the various data repositories, is maintained in the Garlic 

metadata repository" [Ref.32].   The other repository shown in the figure is the Garlic 
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complex object repository. This repository is used to hold the complex objects that 

most Garlic applications will need for "gluing" together the underlying data in new and 

useful ways. Complex objects will be needed to integrate multimedia data with legacy 

data in situations where the legacy data cannot be changed, and as a place to attach 

methods to implement new behavior. For example, in an auto insurance application, 

Garlic complex objects could be used to link the images of a damaged car (stored in an 

image-specific repository) together with an accident report (stored in a document 

management system) and a customer's claim and policy records (legacy data residing in a 

relational database) in order to form a "claim folder" object to be dealt with by an 

insurance agent. [Ref.31 ] 
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Figure 3.2. Garlic Architecture. 
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The Garlic query services and runtime system component provide query 

processing and data manipulation services. This component presents Garlic applications 

with a unified, object-oriented view of the contents of a Garlic database and processes 

users' and applications' queries, updates and method invocation requests against this data; 

queries are expressed in an object-oriented extension of the SQL query language. 

[Ref.31] This component is also responsible for dealing with transaction management 

issues. 

Finally, Garlic applications interact with the query services and runtime 

system through Garlic's object query language and a C++ application-programming 

interface (API). "Many applications do this statically, in which case the Garlic schema is 

presented to the application via a set of C++ classes that act as "surrogates" for the 

corresponding classes of the actual Garlic schema" [Ref.32]. Certain applications may 

require more dynamic access to the data, in which case they will use "a portion of the 

C++ API that provides dynamic access to information about the types and objects 

contained in a Garlic query/browser" [Ref.32]. This component of Garlic provide end 

users of the system with a friendly, graphical interface that supports interactive browsing, 

navigation, and querying of the contents of Garlic databases. In the following subsections 

we will describe the main functions of the system with more details. 

Data Transformation at the Wrapper: In order to reach the data resides in 

different data repositories, a wrapper must be implemented specific to these data 

repositories. Hence, it is possible to extend the system by adding new kind of data 

repositories and writing new wrapper codes for these repositories. The most basic tasks 
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of a wrapper are: "To describe the data in its repository" [Ref.31] and, "provide the 

mechanisms by which users and the Garlic middleware engine may retrieve that data" 

[Ref.33]. 

Since a data source is not likely to conform to Garlic's data model and data 

format (see subsection b), the wrapper must perform some level of schema and data 

transformation. To make the task of writing a wrapper as easy as possible, the "Garlic 

wrapper architecture tries to minimize the required transformations, but wrappers can do 

more if desired" [Ref.31]. 

"The Schemas of individual repositories are merged into the global schema 

via a wrapper registration step" [Ref.32]. In this step, wrappers model their data as 

Garlic objects, and provide an interface definition that describes the behavior of these 

objects. The interface is described using the Garlic Definition Language (GDL) (see 

subsection b). "The interface definition provides an opportunity for a wrapper to rename 

objects and attributes, change types and define relationships even if the data source stores 

none" [Ref.31]. For example, "a relational wrapper might model foreign keys as 

relationships" [Ref.32]. Developing interface files is typically not hard. For simple data 

sources, it may be best to generate them manually, as simple sources tend to have few 

object types, usually with very simple attributes and behavior. For more complex 

sources, the process of generating an interface file can be automated. For example, "a 

relational wrapper can decide on a common mapping between the relational model and 

the Garlic data model (e.g. tuple=object, column=attribute), and provide a tool that 

automatically generates the interface file by probing the relational database schema" 

[Ref.31].    Wrappers must also provide an implementation of the interface which 
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represents a concrete realization of the interface. The implementation cooperates with 

Garlic to assign a Garlic object id (OID) to its objects, and maps the GDL base types 

specified in the interface file to the native types of the underlying data source. [Ref.32] 

A simple example taken from [Ref.31] illustrates the kinds of simple 

schema and data transformations that wrappers can perform. This is a hypothetical travel 

agency application. The agency would like to integrate an Oracle database of information 

on the countries and cities for which it arranges tours with a web site that contains up-to- 

date booking information for hotels throughout the world. The example in the next page 

shows the original table definitions and the -new interface definitions for the two 

relational tables, and the interface file for the web site. The relational wrapper renamed 

the HIGHESTPEAK field to highest_peak, and exposed the foreign key COUNTRY on the 

CITIES table as an explicit reference to a Country object in the integrated database. The 

wrapper must be able to map requests for this attribute from the integrated database (in 

OID format) into the format expected by the relational database (as a string), and vice 

versa. In addition, the POPULATION, ELEVATION and AREA columns are all stored as type 

NUMBER, yet population has type long in the interface file, while elevation and area are 

doubles. 
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Oracle Database Wrapper 

Relational Schema 

CREATE TABLE COUNTRIES{ 
NAME VARCHAR(30) NOT NULL, 

CLIMATE VARCHAR(256), 
HIGHESTPEAK NUMBER(4), 
PRIMARY KEY(NAME)} 

CREATE TABLE CITIES { 
NAME VARCHAR(40), 
COUNTRY VARCHAR(30) NOT NULL, 
POPULATION NUMBER(4), 
ELEVATION NUMBER(7,2), 
AREA NUMBER(7,2), 
PRIMARY KEY(NAME) 

Garlic Schema 

interface Country_Type { 
attribute string name; 
attribute string climate; 
attribute long highest_peak; 
}; 

interface City_Type { 
attribute string name; 
attribute ref<Country_Type> country; 
attribute long population; 
attribute double elevation; 
attribute double area; 
}; 

Hotel Web Site Wrapper 

interface Hotel_Type { 
attribute string name; 
attribute string street; 
attribute string city; 
attribute string country; 
attribute long postal_code; 
attribute string phone; 
attribute string fax; 
attribute short number_of_rooms; 
attribute float avg_room_price; 
attribute short class; 
void display_location(); 
}; 

Each hotel listing on the web site contains HTML-tagged fields describing 

that hotel, and a URL to map the location of a particular hotel given its key. In the 

interface definition file, the HTML fields are represented as attributes of the Hotel object, 

each with an appropriate data type, though the web site returns all data in string format. 
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The map capability is exposed as the display-location method. It is the wrapper's 

responsibility to map names to the fields on the HTML page, and to convert data from 

strings into appropriate types. 

Data Transformation in the Middleware: "Views are an important means 

of reformatting data, especially for the middleware, as the data resides in data sources over 

which the user has little control" [Ref.32]. "Views provide the full power of SQL to do 

type and unit conversions not anticipated by the wrapper, merging or splitting of 

attributes, aggregations and other complex functions" [Ref.3.1]. In Garlic, object views 

allow further restructuring of data. An object view creates a new "virtual" object. Every 

virtual object in Garlic is based on another object. Garlic uses the OH) of the base object 

as the basis for the virtual object's ODD. The LIFT function provided by Garlic is used to 

map the base ODD to the virtual object's ODD. Another advantage of virtual objects is we 

can define new methods for these objects independent from the base objects. Also we can 

lift the base objects' methods to virtual objects. [Ref.31] 

In summary, object views enhance the wrapper transformations with a 

general view mechanism for integrating Schemas. "Object views support integrated 

cooperative use of different legacy databases, through query language based 

transformations" [Ref.31]. Such transformations are required to integrate overlapping 

portions of heterogeneous databases. 

Building the Integrated Schema: In Garlic, a tool called Clio is used to 

create mappings between two data representations. But this is integration is not an 

automatic process, rather a semi-automatic process with user input. The Garlic team 

considers Clio beyond the state of the art for the following reasons. 
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• Clio makes both the schema integration and data transformation at the 

same time while other tools developed in other projects make only one of 

them. 

• It employs a full database middleware engine, "giving it significantly more 

leverage than the ad hoc collections of tools available today, or the 

lightweight "agents" proposed by others" [Ref.32]. 

• "It exploits the notion of a target schema, and where it exists, target data, 

to make the integration problem more tractable" [Ref.32]. 

• It allows more complex transformations of both schema and data, because 

the middleware engine is being enhanced with more powerful 

transformation capabilities. 

Clio has three major components: a set of Schema Readers, which read a 

schema and translate it into an internal representation; a Correspondence Engine (CE), 

which finds matching parts of the Schemas or databases; and a Mapping Generator, 

"which generates view definitions to map data in the source schema into data in the target 

schema" [Ref.31]. The CE has three major subcomponents too: a GUI for graphical 

display of the Schemas and relevant data items, a correspondence generator, and a 

component to test correspondences for validity. Initially, "the CE expects the user to 

identify possible correspondences, via the graphical interface, and provides appropriate 

data from source and target (using the meta query engine) for verifying the 

correspondences and identifying the nature of the relationship (again, initially relying on 

the user)" [Ref.31].  This is an iterative process.  Over time, the Garlic team anticipates 
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"increasing the "intelligence" of the tool using mining techniques so that it can propose 

correspondences, and eventually, verify them" [Ref.31], 

b. The Garlic Data Model 

Garlic has adopted the "ODMG-93 object model as a starting point for the 

Garlic data model and the syntax of the ODMG-93 object definition language, ODL, as a 

base for the Garlic Data Language, GDL" [Ref.32]. 

In the ODMG-93 standard, the fundamental building blocks of the data 

model are objects and values. Each object has an identity that uniquely denotes the 

object, thus "enabling the sharing of objects (by reference)" [Ref.32]. Objects are 

strongly typed, and object types are expressed in the data model in terms of object 

interfaces (as distinct from implementations). The description of an object's interface 

includes "the attributes, relationships, and methods that are characteristic of all objects 

that adhere to the interface" [Ref.32]. The model also supports an inheritance mechanism 

by which a new interface can be derived from one or more existing interfaces. The 

derived interface inherits all of the attributes, relationships, and methods of the interfaces 

from which it is derived, making the derived interface a subtype of those interfaces. 

"In the ODMG-93 data model, an object's identity is both unique and 

immutable" [Ref.32]. Some repositories, such as relational databases, do not provide an 

identity. To enable such data items to be modeled as objects in a Garlic database, 

references in the Garlic data model are based on a notion that is called weak identity; this 

is simply a means of denoting an object uniquely but not necessarily immutably within 

the scope of a Garlic database. "An object's weak identity is formed by concatenating a 
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token that designates the object's implementation with an implementation-specific unique 

key" [Ref.32]. The Garlic data model extends the concepts of the ODMG-93 object 

model in three significant ways. The first is the degree of support for alternative 

implementations of interfaces, the second is related to type system flexibility, and the 

third is an object-appropriate view definition facility. [Ref.31 ] 

Garlic makes a sharp distinction between an interface and its 

implementations. "The type of an object is determined solely by its interface, and any 

number of implementations of a given interface are permitted" [Ref.32]. It is quite 

possible that several repositories may offer alternative implementations of an important 

multimedia data type (e.g., text or image). "Garlic supports both the notion of a type 

extent, which is the set of all instances of a given interface, and an implementation extent, 

which is the set of all instances managed by a given implementation of an interface of 

interest" [Ref.32]. 

The most significant extension that Garlic makes to the ODMG-93 data 

model is the notion of views. In Garlic, the primary purpose of a view is "to enhance 

(extend, simplify, or reshape) a set of underlying Garlic objects, usually by adding or 

hiding some of their attributes and/or methods" [Ref.32]. Garlic employs the notion of an 

object-centered view for this purpose. "An object-centered view defines a new interface, 

together with an implementation of the new interface (usually written using Garlic's 

object query language), that is based on an existing interface that the view definer wishes 

to enhance" [Ref.31]. 
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c Queries in Garlic 

Given the schema for a Garlic database that a user or application wishes to 

utilize, Garlic provides access to the database through a high-level query language. The 

query language of Garlic is an object-oriented extension of SQL. "To accommodate the 

object-oriented nature of the Garlic data model, Garlic extends SQL with additional 

constructs for traversing paths composed of inter-object relationships, for querying and 

materializing collection-valued attributes of objects, and for invoking methods within 

queries" [Ref.31]. Since the Garlic query language is intended for querying databases 

that contain data in a variety of repositories, including multimedia repositories with 

associative search capabilities, Garlic's SQL extensions also take the needs of such 

repositories into account. 

On the other hand, the SQL extensions can help to integrate approximate 

match query semantics with more traditional (exact match) database query semantics. 

This is done by introducing into SQL the notion of graded sets. In such sets, "each object 

is assigned a number between 0 and 1 for each atomic predicate; this number represents 

the degree to which the object fulfills the predicate, with 1 representing a perfect match" 

[Ref.32]. To enable query writers to specify the desired semantics, the syntax of SQL is 

extended to permit the specification of the number of matching results to be returned and 

whether or not rank-ordering (rather than an attribute-based sort order, or an arbitrary 

order) is desired for the query's result set. 

Garlic decomposes a user's query into an execution plan containing a 

number of smaller queries, each of which can be executed by an underlying repository. It 

is the wrapper's job to translate these smaller queries into the repository's native query 
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language. To do this decomposition, "Garlic needs descriptions of the query processing 

power of each repository" [Ref.31]. 

d. Summary 

Garlic's goal is to build a heterogeneous multimedia information system 

capable of integrating data from a broad range of data repositories. The architecture of 

the system is based on repositories, repository wrappers, and the use of an object-oriented 

data model and query language to provide a uniform view of the disparate data types and 

data sources that can contribute data to a Garlic database. A significant focus of the 

project is the provision of support for repositories that provide media specific indexing 

and query capabilities. 

What distinguishes Garlic from other projects in this area is its focus on 

providing an object-oriented view if data residing not only in databases and record-based 

files, but also in a wide variety of media-specific data repositories with specialized search 

facilities. 

3.        DISCO 

DISCO is a data integration project at Inria, Rocquencourt, France. As an 

acronym, DISCO stands for "Distributed Information Search Components". DISCO is a 

prototype heterogeneous distributed database that access underlying data sources 

[Ref.34]. "The data sources can be databases, files, dedicated data servers, or HTML 

pages [Ref.34]. Thus, data can be structured, unstructured or semi-structured. The main 
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goal of DISCO is to provide uniform and optimized access to the underlying data sources 

using a common declarative query language. 

a.        System Architecture 

To scale up to large number of data sources, DISCO adopted a mediator- 

distributed architecture of specialized components consisting of applications, mediators, 

wrappers, and data sources as shown in Figure 3.3. 

Applications: End users interact with applications written by application 

programmers. Applications access a uniform representation of the underlying sources 

through a uniform (SQL-like) declarative query language (see subsection d). 

Application 

Mediator Mediator 

Wrapper Wrapper Wrapper 

Data Source Data Source Data Source 

Figure 3.3. DISCO System Architecture. 
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Mediators: Mediators encapsulate a representation of multiple data sources 

and provide a value-added service"[Ref.35]. Mediators provide the functionality of 

uniform access to multiple data sources. They typically resolve conflicts involving the 

dissimilar representation of knowledge using different data models and database schema, 

and "conflicts due to the mismatch in querying power of each server"[Ref.35]. The 

distributed architecture of DISCO permits DBAs to develop mediators independently and 

permits mediators to be combined, "providing a mechanism to deal with the complexity 

introduced by a large number of data sources" [Ref.35]. 

Wrappers: To deal with the heterogeneous nature of databases, wrappers 

make the subquery transformation. Wrappers map from a subset of a general query 

language, used by mediators, to the particular query language of the source. "A wrapper 

supports the functionality of translating queries appropriate to the particular server, and 

reformatting answers (data) appropriate to each mediator"[Ref.35]. The wrapper 

implementor writes wrappers for each type of database. DISCO supports "type 

transformations to ease the incorporation of new data sources into a mediator" [Ref.35]. 

b. Wrapper Interface 

For the database implementers (DBI), DISCO provides a flexible wrapper 

interface. "DISCO interfaces to wrappers at the level of an abstract algebraic machine 

(AM) of logical operators" [Ref.36]. When the DBI implements a new wrapper, he or 

she chooses a set of logical operators to support. "The DBI implements the logical 

operators, and also implements a call in the wrapper interface which returns the grammar 
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describing the supported logical expressions" [Ref.36]. The mediator interacts with the 

wrapper in two phases. In the register phase, "the wrapper communicates to the 

mediator its local schema, its specification, and a optional description of the cost of 

operations in its algebra" [Ref.37]. During query processing, a DISCO mediator query 

optimizer generates a logical expression for the wrapper. The mediator calls the wrapper 

interface to get the "grammar describing the supported logical expressions, and checks 

that the logical expression generated by the optimizer is legal with respect to the grammar 

describing the wrapper interface" [Ref.38]. 

"Explicit specification of the data sources, as objects, in the DISCO data 

model, gives the DBA the capability to express queries that range over an unspecified 

collection of data sources" [Ref.36], or queries that refer to particular data sources. 

"Inclusion of the data source specification within the model also allows DISCO to 

support a new query processing semantics" [Ref.35]. The type hierarchy and mapping 

supported by the DISCO model, allows the mapping of multiple data sources to a single 

type of a mediator, and also allows the mapping of a data source to multiple types of a 

mediator. "This aspect of the DISCO model supports scaling to a large number of data 

sources" [Ref.34]. New data sources may also be incorporated transparently, if they map 

to the same mediator type. 

c. Mediator Data Model 

DISCO is based on the ODMG standard. The ODMG standard consists of 

an object data model, an object definition language (ODL), a query language (OQL), and 

a language binding. The ODGM object model is based on a type system. Types can be 
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atomic (integer, Boolean, string etc.) or structured. The structured types are the set, bag, 

list, or tuple. The expressions are constructed through the recursive application of 

structured type constructors to atomic types and type expressions. Object types are 

described in the data model thorough an object interface using ODL. An object interface 

specifies the properties and operations or methods that are characteristic of the instances 

of this object type. The object types are organized along a subtype hierarchy. An object 

type extent is a set of instances of a given object type. In the data model, "an interface 

defines a type signature for accessing an object" [Ref.35]. When objects are created or 

destroyed, the extent is updated automatically. "Extents are the primary entry point for 

access to data" [Ref.35]. 

The DISCO group extended ODMG ODL in two ways, to simplify the 

addition of data sources to a mediator. (1) multiple extents: "This extension associates 

multiple extents with each interface type defined for the mediators" [Ref.36]. (2) type 

mapping: This extension associates type mapping information between a mediator type 

and the type associated with a data source [Ref.36]. 

In addition to these extensions, two (standard) ODMG interfaces were 

defined; Wrapper models wrappers and Repository models repositories. A repository is 

"essentially the address of a database or some other type of repository" [Ref.35]. 

Repositories typically contain several data sources. Each data source in a repository is 

associated with in extent, and this provides the entry point to the data source. DISCO 

extends the concept of an extent for an interface, to include a bag of extents for the 

interface, for any type defined for the mediator. Each extent in the bag mirrors the extent 

of objects in a particular data source, associated with this mediator type.   Since this 
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extension is fully integrated into the OBMG model, the full modeling capabilities of the 

ODMG model are available for organizing data sources. DISCO, evaluates queries on 

extents and thereby on the date sources. [Ref.35] 

d. Mediator Query Processing 

"The mediator includes a query processor containing a query preprocessor, 

a query optimizer and a runtime system"[Ref.38]. It also contains a catalog that records 

information on local data, local schema, global schema, etc. This catalog is updated 

"when a source is registered with the mediator by importing the local schema, capabilities 

and cost information of the source" [Ref.38]. The import is accomplished via the 

wrapper associated with the source. 

The processing of a query is accomplished in several steps. 

Step 1: performs "the reformulation of the query into local Schemas" 

[Ref.38]. The query is parsed and type checked against the global schema and then it is 

reformulated into the local Schemas of the sources. "Reformulation is accomplished 

through view definitions and the application of maps" [Ref.38]. 

Step 2: performs logical search space generation. The reformulated query 

is transformed into a "preliminary tree of logical operators in the relational algebra that is 

equivalent to the query" [Ref.38]. The logical operators in the tree belong to a universal 

abstract machine (UAM) of logical operators implemented in the mediator. DISCO has 

the usual logical operators of scan, project, join, etc. In addition, "transformation rules 

rewrite trees to equivalent trees" [rerf.27]. Finally, an additional logical operator, submit, 

"expresses the mediator call to a wrapper" [Ref.37]. 
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Step 3: performs preliminary query decomposition. 

Step 4: compares the "functionality required for each wrapper with the 

capabilities exported by the corresponding wrapper and modifies the wrapper structure to 

use only the capabilities of the wrapper" [Ref.37]. 

Step 5: transforms the final logical operators into an execution plan by 

transforming the logical operations in the mediator composition tree to physical 

algorithms in the mediator runtime system. "The logical operations done by wrappers are 

not transformed because the corresponding physical algorithms are executed by the 

wrapper itself [Ref.37]. This physical algorithm is responsible for calling the associated 

wrapper. "The mediator runtime system is based on the iterator model" [Ref.39]. 

Step 6: "assigns a cost to the execution plan by considering the cost (in 

terms of total time and statistical information) of the physical algorithms in the mediator 

and the costs of the logical operations on the wrappers" [Ref.38]. If a wrapper has 

exported cost equations, those are also considered. 

Steps 2 through 6 are repeated until the execution plan with lowest cost is 

generated. 

Step 7: executes the lowest cost plan. During query execution, the 

mediator calls the wrappers and passes the final wrapper operation plans. The wrappers 

evaluate their operation plans and send their results back to the mediator. "The mediator 

runtime system combines the results using execution plan which represents the final 

composition query" [Ref.38]. If a wrapper is unavailable, a partial answer is produced. 
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e. Summary 

DISCO's architecture is based on the wrapper-mediator architecture, 

extended with several novel features. DISCO's mediators and wrappers operate 

independently: a mediator accesses a wrapper simply through URL-like description of the 

wrapper. So the wrappers can easily be shared among multiple mediators. Each DISCO 

wrapper exports its capabilities using a grammar-like description of the operations that 

the wrapper supports. "Mediators automatically adopt to the capabilities of wrappers by 

using an elegant distinction between the preliminary execution plan and the final 

execution plan., which accounts for wrapper capabilities" [Ref.40]. 

4.        Infomaster 

Infomaster is an information integration system developed and tested at Stanford 

University. Infomaster provides integrated access to multiple distributed heterogeneous 

information sources on the Internet, thus "giving the illusion of a centralized, 

homogeneous information system" [Ref.41]. It can be said that Infomaster creates a 

virtual data warehouse. Infomaster handles "both structural and content translation to 

resolve differences between multiple data sources and the multiple applications for the 

collected data" [Ref.42]. 

In this subsection we show the system architecture and the basic tasks of the 

system. 
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tu System Architecture 

Figure 3.4 shows the general architecture of the Infomaster system. As we 

said Infomaster is a generic information integration tool for integrating existing 

information sources. Information sources that can be integrated vary from SQL 

databases to WWW semistructured data. Infomaster connects these various information 

sources to system using wrappers. "There are several WWW interfaces to Infomaster, 

including forms based and textual" [Ref.41]. 

Facilitator: The core of Infomaster is a facilitator that determines "which 

source contain the information necessary to answer the query efficiently, designs a 

strategy for answering the query, and performs translations to convert source information 

to a common form or the form requested by the user" [Ref.42]. "Formally, Infomaster 

contains a model-elimination resolution theorem prover as a workhouse in the planning 

process" [Ref.41]. As we said, Infomaster has a WWW interface that can be used to 

enter queries using menus, SQL, or ACL. The queries are then converted into ACL and 

passed to the nearest facilitator. "This facilitator may call on the resources of information 

sources and other agents and other facilitators it knows about. Information sources handle 

queries over the data they store" [Ref.42]. Other agents may handle such tasks as doing 

specialized translations, such as currency conversion. "Facilitators may specialize in 

particular domains of interest" [Ref.42]. 
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Figure 3.4. Infomaster System Architecture. 

Wrapper: Wrappers are used to access information in a variety of sources. 

For SQL databases, there is a generic ODBC wrapper. There is also a wrapper for 

Z39.50 (i.e. bibliography libraries) sources. For legacy sources and structured 

information available through the WWW, a custom wrapper is used. "Currently, a 

custom wrapper is written to access housing rental advertisements from several San 

Francisco Bay area newspapers on the WWW" [Ref.43]. 
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Basically, wrappers are programs that translate between the language 

spoken by the information source and the language spoken by the core Infomaster 

system. "The internal content language used by the Infomaster system is the knowledge 

interchange format (KEF), essentially a lisp like syntax for representing first order logic 

expressions" [Ref.41]. 

Knowledge Base: Infomaster uses rules and constraints to describe 

information sources and translations among these sources. These rules and constraints 

are stored in a knowledge base. "For efficient access, the rules and constraints are loaded 

into Epilog, a main memory database from Epistemics" [Ref.42]. 

An important property of Infomaster is that: Harmonizing n data sources 

with m uses doesn't require n x m sets of rules (i.e. for every pair of user and source 

interaction, we don't need a rule). "By providing Infomaster with a reference schema, 

database users are allowed to describe their Schemas without regard for the Schemas other 

users and providers" [Ref.41]. This strategy is shown in Figure 3.5. Translation rules 

describes how each source relates to the reference schema. These translation rules are bi- 

directional whenever possible, "so information stored in one source's format may be 

accessed through another source's format" [Ref.42]. "The same type of rules are used to 

describe how clients want to access data" [Ref.41]. These rules are combined and 

interpreted by Infomaster during query optimization and query processing. "Because 

these translations reference each other essentially through the reference schema, entry 

and maintenance of translation rules is enhanced" [Ref.41]. 

Interfaces: Infomaster includes a WWW interface for access through web 

browser such as Netscape Navigator or Internet Explorer.  "This user interface has two 
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levels of access: an easy-to-use, forms based interface, and an advanced interface that 

supports arbitrary constraints applied to multiple information sources" [Ref.43]. 

However, additional interfaces can be created specific to aim without affecting the core 

Infomaster. 
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Figure 3.5. Infomaster Reference Schema Architecture. 

Infomaster has also a programmatic interface called Magenta, which 

supports ACL (Agent Communication Language) access. "ACL consists of KQML 

(Knowledge Query and Manipulation Language), KEF (Knowledge Interchange Format), 

as well as vocabularies of terms" [Ref.41]. 
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b. Query Processing 

In Infomaster system, the information integration problem is abstracted in 

a hierarchy. In this abstraction hierarchy, the user interfaces and information sources are 

modeled by a set of relations. The queries entered by the users are abstracted as interface 

relations. Data available from an information source can also be seen as a relation, which 

is called site relation. The information integration problem can be reduced in this 

framework to the problem of relating the interface and the site relation in an appropriate 

way. 

Base relations relate the interface and site relations to each other. Specific 

to the task, the base relations are created and after that site and interface relations are 

converted to these base relations. So new information sources are easily integrated to 

system and user interfaces can be changed without affecting the site relations. 

The query processing in Infomaster is a three-step process based on the 

abstraction described above. Assume a user asks a query q. This query is expressed in 

terms of interface relations. In a first step, query q is rewritten into a query in terms of 

base relations. This step is being called reduction. In a second step, the descriptions of 

the site relations have to be used to translate the rewritten query into a query in terms of 

site relations. This second step is being called abduction. The query in terms of site 

relations is an executable query plan, because it only refers to data that is actually 

available from the information sources. However, the generated query plan might be 

inefficient. Using the descriptions of the site relation, the query plan can be optimized. 

Reduction: The reduction step in the query processing sequence is very 

simple. "It is essentially a macro expansion" [Ref.42]. The user query is given in terms 
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of interface relations are defined in terms of base relations. Therefore, the reduction step 

requires only substituting interface relations by the corresponding definitions. 

Abduction: The interesting step in the query processing sequence is the 

abduction step. 'It requires to translate a query in terms of base relation into a query in 

terms of site relations" [Ref.42]. This is more complicated than the reduction step, 

because site relations are expressed in terms of base relations and not vice versa. This 

query-rewriting problem is well known in the database literature as the problem of 

answering queries using views. Infomaster group has developed an algorithm for this 

problem, but, since it is out of scope of our thesis, we won't show this algorithm here. 

c Summary 

Infomaster is an information integration tool that provides integrated 

access to various heterogeneous information sources. The core of the system is a 

facilitator that dynamically determines an efficient way to answer user's queries. 

Different data sources are connected to system by wrappers. 

The essential of the system is the conversion of user queries and 

information source relations into base relations. Therefore new user interfaces and 

information sources can be added to system without affecting the current structure of the 

system. 
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C.       SUMMARY 

In this chapter, we have presented related work done about the heterogeneous 

multidatabase systems. At the beginning, we have discussed the motivation behind the 

multidatabase systems and important issues in multidatabase design. In subsection A.3 

we reviewed the early projects about multidatabase systems took place in late 1980's. 

Among these projects, we gave a special importance to MRSDM which was the first well 

prototyped multidatabase system. In Section B, we have discussed the current projects in 

this area. Among these projects, Tsimmis provides a framework and tools to assist users 

in their information processing and integration activities. Garlic supports integration of 

data not only in databases and record based files, but also in a wide variety of media- 

specific data repositories with specialized search facilities. DISCO projects provide a 

uniform and optimized access to the underlying data sources using a common declarative 

query language. And finally, Infomaster provides integrated access to multiple 

distributed heterogeneous information sources on the Internet. Infomaster handles both 

structural and content translation to resolve differences between multiple data sources 

and multiple applications for the collected data. 
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IV.      SEMANTIC SIMILARITIES BETWEEN DATA OBJECTS IN MULTIPLE 

DATABASES 

In any approach to interoperability of database systems, the fundamental issue is 

that of identifying objects in different databases that are semantically related, and then 

resolving the schematic differences among semantically related objects. In this chapter, 

we focus on the techniques and representational constructs used by the various 

practitioners in the field of multidatabases. We also try to explain techniques for 

representing uncertainty but only as an aspect of the semantic similarity between objects. 

So far, many attempts have been made to capture the similarity of objects by 

using mathematical tools, such as value mappings between domains, and abstractions, 

such as generalization, aggregation, etc. However, it is argued that the RWS of an object 

cannot be captured using mathematical formalisms. We need to understand and represent 

more knowledge in order to capture the semantics of the relationships between the 

objects. The knowledge should be able to capture and the representation should be able 

to express the context of comparison of the objects, the abstraction relating the domains 

of the two objects, and the uncertainty in the relationship between the objects. 

In Section A, we explore the basics of these three perspectives of semantics. In 

Section B, we discuss semantic proximity, and in Section C, the context building 

approach is explained. The context interchange approach is covered in Section D, and in 

Section E we discuss the common concept approach. 
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A.        SEMANTICS: PERSPECTIVES AND REPRESENTATION 

Semantics is defined as "the scientific study of the relations between signs and 

symbols and what they denote or mean," [Ref.44]. These signs and symbols can be 

considered to be aspects of real-world semantics (RWS) of an object. As stated before, 

there are three main perspectives of semantics: context, abstraction and uncertainty. 

1. Context: The Semantic Component 

The context in which the objects are being compared provides semantic support 

for identifying and representing the object similarities. Some critical developments of 

research in the field of heterogeneous databases related to context are as follows: 

• Semantic proximity (Section B) [Ref.46] characterizes semantic similarity 

in which the context is the primary vehicle to capture the RWS. 

• Dynamic context building approach (Section C) [Ref.47] provides for 

meaningful information exchange between various information systems. 

• Context Mediation (Section D) Sciore and Siegel [Ref.48] propose an 

approach that uses metadata to represent context thereby achieving context 

mediation 

• Common concepts [Ref.49] (Section E) characterizes similarities between 

attributes in multiple databases. 
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2. Abstractions/Mappings: The Structural Component 

Abstraction in this chapter refers to the relation between the domains of two 

objects. However, since abstractions by themselves cannot capture the semantic 

similarity, they must be linked using either context or additional knowledge in order to 

capture the RWS. "Mapping between the domains of objects is the mathematical tool 

used to express the abstractions" [Ref.45]. Some of the approaches are as follows: 

• Define abstractions in terms of value mappings between the domains of 

objects and associate them with the context as a part of the semantic 

proximity (Section B) [Ref.46]. 

• Define mappings between schema elements, which they term interschema 

correspondence assertions or ISCAs (Section C). A set of ISCAs under 

consideration defines the context for integration of the Schemas. [Ref.47] 

• Define mappings that they call conversion functions (Section D), which 

are associated with the meta-attributes that define the context. [Ref.48] 

• Associate the attributes with "common concepts" (Section E). Thus the 

mappings (relationship) between the attributes are determined through the 

extra knowledge associated with the concepts. [Ref.49] 

3.        Modeling Uncertainty, Inconsistency, and Incompleteness 

Understanding and representing semantic similarity between objects may involve 

"understanding and modeling uncertainty, inconsistency, and incompleteness of the 

information pertaining to the objects and the relationships between them as modeled in 

the database" [Ref.45].   Some approaches are to: (a) model uncertain information by 
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using the degrees of likelihood of the various intermediate contexts [Ref.47] (Section 

C); (b) use semantic proximity as a basis for representing the uncertainty of the 

information modeled at the database level [Ref.46] (Section B); and, (c) represent each 

attribute as a vector depending on the concepts associated with it. A similarity measure 

between two attributes is defined as a function of the vectors associated with the 

attributes [Ref.49]. 

B.       SEMANTIC PROXIMITY: A MODEL FOR REPRESENTING SEMANTIC 

SIMILARITIES 

There are two basic keys to the representation of semantics. The first focuses on 

identifying the real-world semantics of various entities and the relationships between 

them. The second is to represent all known knowledge about the domain at hand. Once 

these issues have been addressed, the relationships between various objects can then be 

determined on the basis of the encoded domain knowledge. 

The concept of semantic proximity is introduced to characterize semantic 

similarities between objects and use it to provide a classification of semantic similarities 

between objects [Ref.46]. Given two objects 01 and 02, the semantic proximity (Figure 

4.1) between them is defined by the 4-tuple given by: 

semPro(01, 02) = (Context, Abstraction, (Dl, D2), (SI, S2)) 

where Di is domain of Oi, and Si is state of Oi. 

86 



1. Context(s) of the Two Objects: The Semantic Component 

Each object has its own context. The term context in semantic proximity refers to 

the context in which a particular semantic similarity holds. This context may be related 

to or different from the contexts in which the objects were defined. It is possible for two 

objects to be semantically closer in one context than in another context. Thus, the 

respective contexts of the objects, and the abstraction used to map the domains of the 

objects, both help to capture the semantic aspect of the relationship between the two 

objects" [Ref.46] 

Some of the alternatives for representing a context in an interoperable database 

system are as follows: 

Context 01 

Model 
World 1 

Context 02 

of 
SemPro(01,02) 

02 

Contex<01,02) 

Model 
World 2 

Figure 4.1. Semantic Proximity Between Two Objects. 
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• Context is defined as the knowledge that is needed to reason about another 

system, for the purpose of answering a query, and is specified as a set of 

assertions. [Ref.47] 

• Context is defined as the meaning, content, organization, and properties of 

data and is modeled using metadata associated with the data. [Ref.49] 

• A context may be linked with a database or a group of databases [Ref.45]. 

• The relationship in which an entity exists may determine the context of the 

entity [Ref.45]. 

• At a very elementary level, a context can be thought of as a named 

collection of the domains of the objects [Ref.45]. 

2. Issues of Representation and Reasoning 

Various approaches have been proposed for representing semantic structures in 

the context of multidatabase systems, similar to context and for reasoning with the help 

of these representations. Kashyap and Sheth [Ref.50] use context to provide intentional 

descriptions of database objects. They represent contexts as a collection of contextual 

coordinates and values. 

A contextual coordinate indicates an aspect of context that models a characteristic 

of the subject domain. The coordinate may be obtained from a domain specific ontology. 

Values can be a set of symbols, objects from a database, or concepts from a domain- 

specific ontology. Operations to compare the specificity of two contexts and to compute 

the greatest lower bound of two contexts are defined. 
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In another similar approach, a context is represented as a collection of meta- 

attributes and their values (Section D) [Ref.48]. This representation of context is at the 

level of data values and object instances. "Constraints are not able to be modeled at an 

intentional level (namely, cardinality constraints)" [Ref.48]. Context mediation is used 

for reasoning and is implemented using rules and predicates in a relational model. 

3. The Vocabulary Problem 

In constructing contexts and intentional descriptions for modeling semantics, the 

choice of terminology specific to the subject domain is critical. (WHY?) To address this 

critical need, traditional multidatabase approaches are now using ontologies for building 

semantic descriptions. An ontology may be defined as, "the specification of a 

representational vocabulary for a shared domain of discourse, which may include 

definitions of classes, relations, functions, and other objects" [Ref.51]. 

Relationships among the terms listed in ontologies enable representation of extra 

information in the contextual descriptions. Concept hierarchies have also been used in 

the common concepts approach [Ref.49] (Section E). Terminological relationships have 

been represented across ontologies to "handle cases where contexts or intensional 

descriptions may be constructed from different ontologies" [Ref.49]. An approach for 

resolving representational conflicts using terminological relationships is discussed in 

Chapter V (Remote-Exchange approach) . 
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4. The Structural Components 

In this section, we discuss the three structural components of semantic proximity, 

abstraction, domain, and states. 

a.        Abstraction Used to Map the Objects 

The term "abstraction" is used to refer to a mechanism that maps the 

domains of the objects to each other, or to the domain of a common third object. An 

abstraction by itself cannot capture the semantic similarity. Some of the more useful and 

well-defined abstractions are listed here [Ref.45]: 

• Total 1-1 value mapping: For every value in the domain of one object, 

there exists a value in the domain of the other object and vice versa. 

• Partial many-one mapping: In this case, some values in the domain of one 

of the objects might remain unmapped, or a value in one domain might be 

associated with many values in another. 

• Generalization/specialization: One domain can generalize or specialize the 

other, or domains of both the objects can be generalized/specialized to a 

third domain. 

• Aggregation: One domain can be an aggregation, or collection, of other 

domains. 

• Functional dependencies: The values of one domain might depend 

functionally on the other domain. 

• ANY: This term is used to denote that any abstraction (such as the ones 

defined here) may be used to define a mapping between two objects. 
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• NONE: This term is used to denote that no mapping is defined between 

two semantically related objects. 

b. Domains of the Objects 

Domains refer to the sets from which the objects can take their values. 

When using an object-oriented model, the domains of objects can be considered as types, 

whereas the collections of objects might themselves be of as classes [Ref.45]. A domain 

can be either atomic (i.e., cannot be decomposed any further) or composed of other 

atomic or composite domains. The domain is, in other words, a subset of the product 

resulting from the crossing of the domains of the properties of the object [Ref.45]. Figure 

4.2 shows a domain of an object and its attributes. 

Figure 4.2. Domain of an Object and its Attributes. 
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An important distinction between a context and a domain should be noted. 

One of the ways to specify a context is as a named collection of the domains of objects, 

(i.e., it is associated with a group of objects.) A domain, on the other hand, is a property 

of an object and is associated with the description ofthat object. 

c. States (Extensions) of the Objects 

The state of an object can be thought of as an extension of an object 

recorded in a database or databases. Two objects having different extensions can have 

the same state real-world semantics (and hence be semantically equivalent). 

5. A Semantic Classification of Object Similarities 

Here, the emphasis is on identifying semantic similarity independent of the 

representation of the objects. The concept of semantic proximity defined earlier provides 

a means of qualitative measurement to classify the semantic similarities between objects. 

a.        The Role of Context in Semantic Classification 

A partial context specification can be used by humans to decide whether 

context for modeling of two objects is the same or different, and whether the comparison 

of semantic similarity of objects is valid in all possible contexts or specific ones [Ref.45]. 

For semantic similarity in all possible contexts, the semantic proximity between the 

objects is defined with regard to all known and coherent comparison contexts. (Figure 4.3 

shows the types of semantic proximity.) In this case, there should be coherence between 
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(a) the definition contexts of the objects being compared, and (b) between the definition 

contexts and the context of comparison. 

For subcontexts with similar content, we might be interested in the semantic 

proximity between two objects in contexts that are more specific or more general with 

regard to the context of comparison. For dissimilar context labeled as None, no context 

exists in which a meaningful abstraction or mapping between the domains of the objects 

may be defined. This is the case when the definition contexts of the objects being 

compared are not coherent with each other. 

When the semantic proximity between the objects is defined with regard to some 

specific context, this context may be constructed according to its Greatest Lower Bound 

(GLB) or Least Upper Bound (LUB). For the context of the two objects, we are interested 

in the GLB of the context of comparison and the definition context of the object. For the 

LUB, we are concerned with the definition contexts of the two objects when no 

abstraction/mapping exists between their domains in the context of comparison. 

1. Semantic Equivalence: Two objects are defined as semantically equivalent 

when they represent same real-world entity or concept, and is the strongest 

measure of semantic proximity two objects can have. It means that given two 

objects Ol and 02, it should be possible to "define a total 1-1 value mapping 

between the domains of these two objects in any known and coherent context" 

[Ref.45]. The notion of equivalence, known more accurately as domain 

semantic equivalence, depends on the definition of the domains of the objects. 

A stronger notion of semantic equivalence between two objects is one that 
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incorporates the state of the databases to which the two objects belong. This 

equivalence is called state semantic equivalence and is defined as: 

semPro(01, 02) = (ALL, M, (Dl, D2), (SI, S2)) 

where M is a total 1-1 value mapping between (Dl, SI) and (D2, S2).Thus we 

can write it as: 

semPro(01, 02) = (ALL, total 1-1 value mapping, (Dl, D2), Don't care) 

2. Semantic Relationship: Two objects are said to be semantically related when 

"there exists a partial many-one value mapping, a generalization, or 

aggregation abstraction between the domains of the two objects" [Ref.46]. 

This type of semantic similarity is weaker than semantic equivalence. Here 

we relax the requirement of a 1-1 mapping in a way that given an instance Ol, 

we can identify an instance of 02 but not vice versa. The requirement that the 

mapping be definable in all the known coherent contexts is not relaxed 

[Ref.46]. Thus we define the semantic relationship as 

semPro(01, 02) = (ALL, M, (Dl, D2), Don't care) 

where M may be a partial many-one value mapping, generalization, or aggregation. 
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Figure 4.3. Semantic Classification of Object Similarities 

3. Semantic Relevance: We consider two objects to be semantically relevant if 

they can be "related to each other using some abstraction in some context" 

[Ref.46]. Thus the notion of semantic relevance between two objects is 

context dependent, (i.e., two objects may be semantically relevant in one 

context, but not so in another.) Objects can be related to each other using any 

abstraction. 

semPro(01, 02) = (SOME, ANY, (Dl, D2), Don't care) 
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4. Semantic Resemblance: The weakest measure of semantic proximity, semantic 

resemblance, might be useful in certain cases. Here, we consider the case in 

which the "domains of two objects cannot be related to each other by any 

abstraction in any context" [Ref.46]. Hence, the exact nature of semantic 

proximity between two objects is very difficult to specify. In this case, "the 

user may be presented with extensions of both the objects" [Ref.46]. In order 

to express this type of semantic similarity, an aspect of context, called role, is 

introduced, and semantic resemblance is expressed with its help [Ref.46]. 

semPro(01, 02) = (SOME(LUB), NONE, (D1,D2), Don't care) 

5. Semantic Incompatibility: While all the qualitative proximity measures 

defined so far describe semantic similarity, semantic incompatibility asserts 

semantic dissimilarity [Ref.46]. It should be noted that a lack of semantic 

similarity does not automatically imply that the objects are semantically 

incompatible. Establishing semantic incompatibility requires asserting that 

"the definition contexts of the two objects are incoherent with regard to each 

other and there exist no contexts associated with these objects such that they 

have the same role" [Ref.46]. 

semPro(01, 02) = (NONE, NONE, (Di, D2), 

C.        CONTEXT BUILDING APPROACH 

This approach centers on the construction and maintenance of the context, within 

which meaningful information between heterogeneous information systems is proposed 
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for exchange. The context is defined as a set of interschema correspondence assertions 

(ISCAs). Each ISCA consists of three dimensions: naming, abstraction, and level of 

heterogeneity. A classification of semantic conflicts is used as a basis for building and 

refining the context by discovering the ISCAs between corresponding elements of the 

component systems. The mathematical formalism used to model the structural similarity 

is expressed as the last two dimensions of the ISCA, abstraction and level of 

heterogeneity. The association between the abstraction and the context is achieved 

through the ISCAs that embody the correct context. 

Context is described here as the "knowledge that is needed to reason about another 

system, for the purpose of answering a specific query. The context must provide an 

easily understood representation of how much is known and what is still needed in order 

to answer the query" [Ref.47]. The (partial) Schemas and the subsequent query in the 

example [Ref.47] below are used to elaborate on the issues of context building. 

EXAMPLE-1 

Database: A database of a computer manufacturer 

Data model: Relational 

Schema: COMPETITOR (Name, Location, MarketShare, Netlncome) 

Database: Financial information of companies in the US Community 

Data model: Relational 

Schema: COMPANY (Rank, Co-Name, Location, Industry) 

Query: "What is the performance of my competitors in the US?" 
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1.        Context-Dependent Interpretation 

Distinct contexts can lend different interpretations to a schematic conflict. 

[Ref.47]. The processes of detection of conflicts and integration help build a context 

dynamically, as the query itself "may be important in providing a context for the 

meaningful interpretation of schematic elements," [Ref.47]. Consider Example-2 

[Ref.47], based on the Schemas and query shown in Example-1, which illustrates the 

above (THE ABOVE WHAT?) 

EXAMPLE-2 

Hypothesis:  COMPETITOR.Name and  COMPANY.Co-Name appears to be 

related. 

Context: Suppose  the   term   "competitor"   is   the  specialization   of the  term 

"company."   The   query   specifies   "competitor"   and   provides   a   context. 

Interpretation: We may conclude that COMPETITOR..Name and COMPANY. 

Co-Name are synonyms. 

a. Organization of Context by Levels of Heterogeneity 

The object level is considered to be a higher level of heterogeneity than 

the attribute level, which is coarser than the instance level. In addition to structural 

schematic levels of heterogeneity, there are metadata levels of heterogeneity. These 

include (a) the differences requiring knowledge describing the objects and the attributes 

of the schema (also known as descriptive metadata); (b) knowledge of the semantics that 

are inherent, implicit, and explicit in data models; and (c) general or domain-specific 
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knowledge about the database itself. Concepts at the metadata level could be objects, 

attributes, or instances (see Example-3 [Ref.47]). 

EXAMPLE-3 

The interschema correspondence assertion (ISCA) that 

COMPETITOR.Name and COMPANY. Co-Name are corresponding attributes, triggering 

an attempt to place them in the context of the respective objects they describe. This may 

result in the inference of an ISCA that COMPETITOR and COMPANY are 

corresponding objects. This is called upward propagation through the levels of 

heterogeneity. If there is enough evidence to refute the synonymy of COMPETITOR and 

COMPANY, this evidence would trigger a downward propagation to reclassify the 

relationship of COMPETITORName and COMPANY.Co-Name as homonyms. 

The semantic knowledge of another system, organized by levels of 

heterogeneity, provides a context for interpreting the view of the system" [Ref.47]. 

b. Classification and Representation of Semantic Conflicts 

The classification and representation of semantic conflicts is the founding 

principle behind dynamic context building. Conflicts are classified along the three 

dimensions of naming, abstraction, and level of heterogeneity. The semantic relationship 

between two elements of different databases is represented as an interschema 

correspondence assertion as follows [Ref.47]: 

Assertfx, y] (naming, abstraction, heterogeneity) 
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The first two dimensions (naming and abstraction) include "what they 

view fundamental relationships between semantic concepts" [Ref.47]. The third 

dimension (level of heterogeneity) is needed to place the semantic relationship in the 

appropriate schematic context (see Example-4 [Ref.47]). 

Naming conflicts refer to the relationship of the object, attribute, or 

instance names. These conflicts include synonyms and homonyms. "If a conflict cannot 

be categorized as either a synonym or a homonym, it is classified as unrelated" [Ref.47]. 

A conflict can involve objects that refer to the same class of objects, 

objects that represent similar semantic concepts at different levels of abstraction 

(generalization/specialization), an object that maps to a group of objects in another 

database (aggregation/part-of), or an incompatibility that occurs when one object can be 

mapped to another through a computed or derived function" [Ref.47]. 

EXAMPLE-4 

The conflict between COMPANY. Co-Name and COMPETITOR.Name 

can be classified as: 

Assert[COMPANY.Co-Name, COMPETITORName] 

(synonyms, generalization, (attribute, attribute)) 

"Assertions that have been inferred through upward propagation require 

reconciliation to fill the slots of the classification" [Ref.48]. » 

AssertfCOMPANY, COMPETITOR]^, ?, (object, object)) 
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D.   CONTEXT INTERCHANGE APPROACH 

The context of data is essentially a collection of meta-attributes that model the 

associated metadata. When we consider the problem of transferring data from one 

environment to another and its manipulation in a new environment, we can use the 

context to cope with the meaning, content, organization, and properties of the data. We 

can also use context to model the environment to which the data belongs. [Ref.48]. 

The mathematical formalism used to model the structural similarity is expressed 

using conversion functions. These conversion functions are used to translate data from 

one context to another, thus enabling context interchange. Achieving an association 

between the mappings (conversion functions) and the context is accomplished by 

defining a conversion function for each meta-attribute that may be a part of the definition 

of a context. 

1. Context and Metadata 

A data source's metadata defines the export context and consists of stored 

information or rules describing the data provided by the source. A data receiver's 

metadata is called its import context and consists of predicates describing the properties 

of the data expected by the receiver [Ref.48]. 

EXAMPLE-5 

A data source provides trade prices for stocks on the NYSE. The context of a 

trade price value might be the latest trade price in U.S. dollars.    Data from this 
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environment may be moved to the environment of a Japanese company where the context 

might be the latest trade price in yen. 

During the data interchange in Example-5 [Ref.48], the export context of the 

source is compared to the import context of the receiver to determine whether the data is 

meaningful to the receiver. Thus it is necessary to represent context using context 

specifications, and to compare those specifications to achieve context mediation. 

[Ref.48]. The idea is to represent all contexts from the data environment at the attribute 

level, using meta-attributes. "Meta-attributes are attributes that have a special 

relationship to the attributes whose context they define" [Ref.48]. For the financial data 

source discussed in Example-5, Currency and PriceStatus would be meta-attributes of 

the TradePrice attribute. Consider the schema in Example-6 [Ref.48] for the financial 

data source. 

EXAMPLE-6 

TRADES(lnstrumentType, CompanyName, Exchange, 

TradePrice(PriceStatus, Currency)) 

An example tuple can be given by 

('equity', 'IBM', *NYSE\ 89.25ClatestTradePrice', 'USDollars')) 

2. Data Conversion (Conversion Functions) 

A conversion function alters the values of a tuple's attributes and meta-attributes 

in a way that renders the meaning of the information unchanged. Each meta-attribute has 

a conversion function defined for it; by default, the conversion function for M is called 

cvtM.   For example, suppose that a tuple in the TRADES relation has a TradePrice 
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value of 3 and a TradePrice.Currency value of 'USDollars'. The conversion function 

call cvtTradePrice (3, 'USDollars', 'Yen') returns the value 330 (assuming 1 U.S. 

dollar =110 yen). The function cvtTradePrice is an example of a total and lossless 

conversion function. A total function is one that is defined for all arguments, and a loss- 

less function is one for which every conversion has an inverse (AN INVERSE WHAT?)" 

[Ref.45]. Not all functions have these features. 

a. Context Mediation 

The context mediator component examines each incoming tuple and 

attempts to build a new conversion function that will produce a tuple that conforms to the 

receiver's assumptions. [Ref.48].   The receiver's assumptions about the incoming tuple 

are described by the receiver's import context—"a predicate on the tuple's attribute 

values" [Ref.48]. The task of the context mediator is to return a conversion function that 

maps the input tuples to the receiver's import, context. This function is used to define a 

relational operator called cvtContext (see Example-7 [Ref.48]). 

EXAMPLE-7 

Suppose the TRADES table contains values for the attribute TradePrice with 

TradePrice.Currency = 'USDollars' 

Suppose the receiver context is TradeCurrency = 'Yen' 

The conversion function used will be: 

cvtTradePrice(X, 'USDollars', 'Yen') 

The relational operator can be defined using the above conversion function: 
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cvtContext(TRADES, TradePrice.Currency = 'Yen') 

E.        COMMON CONCEPTS: AN APPROACH TO DETERMINE ATTRIBUTE 

SIMILARITIES 

The context is implied in the representation of the functional definition of the 

concepts. The attributes are associated with the common concepts. Thus the mappings 

(relationships) between attributes are determined through "their association with the extra 

knowledge or the implicit context embodied in the common concepts" [Ref.49]. 

Uncertainty in the relationship between two attributes is modeled using similarity values. 

Each attribute is defined as a vector depending on the concepts associated with it. "The 

similarity value between two attributes is a function of e vectors associated with the 

attributes" [Ref.49]. 

1. Representation of Attribute Semantics by Common Concepts 

Each attribute can be characterized by a set of common concepts. Each concept 

represents a certain characteristic or a property that may be possessed by many objects 

(physical and/or abstract objects-see Example-8). These concepts are generic, (i.e., they 

are not application dependent.) 

EXAMPLE-8 

The common  concepts horizontal-position and vertical-position represent the 

horizontal and vertical position of a point, respectively. 
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The common concept identification can be associated with the attributes sensor, 

mission, and platform in the NASA databases, as these attribute have the property 

of identifying object. 

Concepts may have hierarchical relationships with other concepts. "Two 

relationships of particular significance are aggregate concept hierarchies an IS-A concept 

hierarchies" [Ref.48]. 

a.        Aggregate Concept Hierarchies 

The example of the concept time-interval is considered, which specifies a 

duration of time. It (WHAT?) could be modeled as an aggregate concept of the concept 

begin-time and end-time: 

time-interval = agg:egate(begin-time, end-time) 

The attributes tpstart and tpstop can be characterized, respectively, by 

time-interval.begin-time and time-interval.end-time 

The two  attributes  are recognized to be  an aggregate attributes  and  are 

characterized by the aggregate concept time-interval. 

Consider the possible attribute similarity between (start-date,  length)  and 

(tpstart, tpstop). There are two levels of possible similarity [Ref.49]: 

• Individual similarity: There is a similarity between start-date and tpstart as they 

are associated with the concept time-interval.begin-time. 

• Aggregate similarity: There is a similarity between (start-date, length) and 

(tpstart, tpstop) as they are associated with the concept time-interval. 
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It should be noted that, a similarity with respect to aggregate attributes does 

not necessarily ensure that a similarity exists among individual attributes involved in the 

aggregate attributes. [Ref.49]. The attribute start-date is associated with time- 

intervalbegin-time, but the attribute length is not associated with time-interval.end-time. 

For each aggregate concept in a hierarchy, the existence of a component labeled, "others" 

illustrates the lack of completion of any preexisting hierarchy, and enables the user to 

specify other component concepts. 

b. IS-A Concept Hierarchies 

The IS-A concept hierarchy is the generalization specialization used in 

most semantic data models and object-oriented data models. [Ref.45]. If an object 

characterized by concept X is a subset of objects characterized by concept Y, then we call 

Y the generalization of X (equivalently, X is the specialization of Y). X is also called a 

subconcept of Y, and Y is called the super concept of X. For example, the concept square 

is a subconcept of rectangle, which in turn is a subconcept of quadrangle. 

F.        SUMMARY 

In this chapter, first we present the important of knowledge and representation in 

order to capture the semantics of the relationships between the objects. The knowledge 

should be able capture and the representation should be able to express the context of 

comparison of the objects. 
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In Section A, we discuss the perspectives of semantics (context, abstraction, and 

uncertainty) and how the various researchers have dealt with these issues. 

In Section B, the concept of semantic proximity is introduced to characterize 

semantic similarities between objects. Explanation is provided to demonstrate how 

semantic proximity is employed to provide a means of classification of semantic 

similarities between objects. 

We have discussed the context building approach in Section C which centers on 

the construction and maintenance of the context, within which meaningful information 

between heterogeneous information systems is proposed for exchange. The context is a 

defined set of Interschema Correspondence Assertions (ISCAs). 

The context interchange approach is presented in Section D. In this approach, 

data is transferred from one environment, and is then manipulated in a new environment. 

Conversion functions are used to change values of tuple's attributes and meta-attributes in 

a way that leaves the meaning of the information unchanged. Finally, we discuss the 

common concepts approach. In this approach, the mappings between data objects are 

determined through their association with the extra knowledge or the implicit context 

embodied in the common concepts. 

In the next chapter, we will present the integration of information in different 

heterogeneous data sources. 
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V.       INTEGRATION OF INFORMATION IN DIFFERENT DATA SOURCES 

In this chapter, we discuss the information integration techniques to ensure a 

homogeneous view of information sources and present our ideas about these techniques. 

Even though there are many approaches to multidatabase system designs, so far only the 

problems with database engineering have been addressed. We believe that a general 

methodology for information integration can be adapted to all these approaches. So in 

this chapter, first we examine the general principles of data integration. 

As far as data integration is concerned, we believe that the type of information 

or data to be integrated is very important. Therefore, we make a new classification for 

the application areas of information integration. One is a domain specific application 

area where integration is required in a closed system such one consisting only of related 

data, such as medical, geographical, military etc. The other area is more general and is 

completely open to any kind of databases and information. The best example of the 

latter is the World Wide Web (WWW). 

The related work and architecture mentioned thus far can be placed under one of 

these two classifications. The earliest projects developed (discussed in Chapters II and 

TTT) are clearly in the domain specific application area, because the motivation behind 

these projects was to establish a virtually homogeneous database used in specific 

organizations and companies. The projects defined as "current developments" can be 

classified in the second category, since the motivation was to use the current network 

capabilities more efficiently and to make the Web a virtual unique homogeneous 

information source. 
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It is apparent that a closed system is more tightly coupled and the number of 

member information sources is relatively very small, so the information integration 

problem is not as challenging as it is in an open system. The knowledge stemming from 

the classical database development era forced engineers to adopt the same techniques in 

classical databases. Among all the systems developed, the general approach was almost 

the same, to develop a stored global database definition (Meta-data) and a global 

database management system. The information integration problem came onto the scene 

when global meta-data was introduced. Then the problem was divided into two parts: 

1. How the structural differences among the member databases can be 

eliminated; and, 

2. How semantic heterogeneity at all levels (entity, attribute and extension) 

can be eliminated. 

The general name of methodologies developed to address these problems is 

called schema translation process. We will examine this process in detail in subsequent 

sections, but suffice it to say at this point that this process is not fully automated and 

requires human interference at many points. 

On the other hand, when an open system is concerned, it seems impossible to 

translate all local schemas into a unique global schema, because the numberof member 

information sources can increase rapidly. This characteristic makes it impossible to 

interpret and combine different structures and semantics into a homogeneous structure, 

at least by human beings. So the shift in interest went towards another approach: 

wrapper-mediator architecture.    The idea behind this approach was that, instead of 
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establishing a global schema of the whole system statically, (only allow changes when 

deemed necessary on a rare occasion), use only the integration of relevant information 

sources and make the integration at run time when needed. 

Of course, this new architecture entailed new problems. The first problem is 

similar to the schema integration problem, but in this case the local Schemas are more 

heterogeneous and the data may not be wholly structured (e.g., data might reside in a 

text file instead of a structured database). The most common approach to address this 

problem is to use a global data model. Second, the contents of member information 

sources are so irrelevant that the system, in the beginning, has no idea about the location 

of a specific data. So the relevant data must first be found among all distributed 

heterogeneous information sources. We examine this location identification problem in 

subsequent sections under the heading, "semantic networks." 

In the chapter layout, first we examine the resolution of representational diversity 

in multidatabase systems. After that we discuss the schema integration process that 

takes place between the local Schemas and a global schema, or a global data model. And 

finally we discuss the semantic networks and the usage of an electronic lexicon 

"WordNet" to resolve the semantic heterogeneity problem. 

A. RESOLUTION OF REPRESENTATIONAL DIVERSITY IN 

MULTIDATABASE SYSTEMS 

The occurrence of representational differences that exist among related data 

objects in different local information sources is a major problem that frequently occurs 
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when attempting to support information sharing among autonomous heterogeneous 

database systems. In this context, a key to supporting sharing involves merging nonlocal 

data into the schema of an importing component as efficiently as possible. [Ref.52]. 

Support the resolution of semantic and representational (modeling) differences between 

the local and nonlocal perspectives is essential to achieving a graceful merger. 

Resolving representational differences indicates two steps: 

1. Determine to as great an extent as possible the relationships between 

sharable objects in different components, and 

2. Detect possible conflicts in their structural representations that will 

produce problems. 

Especially during the early stages of multidatabase systems, many approaches 

were adopted and different methodologies were proposed for establishing relationships 

among data objects and conflict resolution. We describe these approaches in more detail 

in Chapter-rV. 

1.        Heterogeneity in a Collaborative Sharing Environment 

In order to support sharing of information among a collection of autonomous 

heterogeneous databases, many aspects of heterogeneity must be overcome (e.g., 

hardware heterogeneity, operating system heterogeneity), that make it difficult for 

components to cooperate. Heterogeneity is the natural consequence of the independent 

development and evolution of autonomous databases that serve fulfill the requirements 

of the application system they belong to. And, there is not total agreement with respect 
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to the clear definition and scope of the problem. [Ref.53]. In this section, we 

concentrate on a specific kind of heterogeneity that occurs at the database system level 

called representational heterogeneity. By this we mean variations in the semantics and 

structures of data in different components. 

In this section, we examine the different kinds of heterogeneities that may occur 

as well as the causes of the representational diversities occurring in this heterogeneity. 

a.        Types of Representational Heterogeneities 

Within the context of a multidatabase system with heterogeneous, 

autonomous components, we can a characterize a broad range of representational 

heterogeneity based on the following five levels of abstraction: 

1. Metadata language (Conceptual database model): The 

components may use different collections of techniques for combining the structures, 

constraints, and operations used to describe data. Different data models provide 

different structural primitives such as records in the relational data model or objects in 

the functional data model, and operations for accessing and manipulating data such as 

QUEL and QSQL. Note that even when two database systems support the same data 

model, the differences in their data definition languages may still contribute to semantic 

heterogeneity. [Ref.52]. 

2. Metadata specification (conceptual schema): While the 

components share a common metadata language (conceptual database model) mentioned 

above, they may have varied conceptual Schemas (specifications of their data).   For 
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example, in two relational databases, the same data object may be represented as an 

entity in one database and as a relation in the other one. 

3. Object comparability: The components may agree on a 

conceptual schema, however, there may be differences in the way information facts are 

represented [Ref.54]. This range of heterogeneity also encompasses the ways in which 

information objects are identified, and the interpretations of atomic data values as 

denotations of information modeled in a database. [Ref.52]. For example, a ship may be 

represented by Hull Number (e.g., S-351) in one database while it is being represented 

by the International Name (e.g., TBCK) in another one. Despite a difference in their 

type names, they represent the same data object. But note that, from the previous 

representation we can deduce that "this ship is a submarine," and this information is 

considered missing information in the other representation. Similarly, we can 

understand that this ship belongs to the Turkish Navy (i.e., TB represents Turkish Navy) 

from the latter type name, and this is also considered missing information in reference to 

the first database. 

4. Low-level data format: Although the components agree at 

the model, schema, and object comparability levels, these same components may use 

different low-level representation techniques for atomic data values [Ref.52]. If we give 

an example similar to the previous one using ships, the conflicting difference in 

representation technique refers to the problem arising when values such as the length of 

a ship are represented using different units (meter vs. feet). 
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5. Tool (database management system): The components 

may use different tools to manage and provide an interface to their data. This kind of 

heterogeneity may exist with or without the varieties described immediately above. This 

kind of heterogeneity is due to the fact that components may use a different DBMS. 

We assume that the heterogeneities of type 1 and 5 are not as trivial as 

the 2, 3, and 4, because, type 1 (conceptual database model) heterogeneities can be 

eliminated by ensuring that the components utilize a common data model in a small 

federation. Or, a common data model can be adopted for larger systems with appropriate 

translations for local database models. When the common global data model is 

concerned, we propose that a universal standard must be ensured among the database 

project groups. But as far as we have seen in the literature, there is still a debate 

between different research groups about the kind of common data model. Although 

object-oriented data models take an advantage in this competition, there are still 

problems that prevent the full development of translation protocols between every type 

of data model. 

But we don't consider this issue so important especially when the semantic 

heterogeneity problem is concerned, so further discussion on this issue is not presented 

in this section. Furthermore, no tool heterogeneity (type 5 in the spectrum) is not 

described in further detail as it is not particularly relevant to the discussion here. Instead, 

the remainder of this section will focus on resolving heterogeneities of type 2,3, and 4. 
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b.        Causes of Representational Diversities 

According to Batini et al. [Ref.55], there are three main causes of 

representational heterogeneity: 

1. Different perspectives and needs: This is a modeling 

problem occurring most frequently during the design phases of a database schema. 

Different user groups or designers adopt their own ways when modeling the same 

information, especially in this case of naming conventions as used in modeling. 

Referring back to our classic example, some may want to represent a ship as an object 

by hull number, and others may want to use an international name. 

2. Equivalent constructs: Data models, with their rich set of 

constructs, provide for a large number of modeling possibilities resulting in variations in 

the conceptual database structure. [Ref.54]. Generally, in conceptual models, several 

combinations of constructs can effectively model the real world domain. [Ref.52]. For 

example, a many-to-many relationship between two types can be modeled as several 

one-to-one relationships. 

3. Incompatible design specifications: Different design 

specifications result in different Schemas. Cardinality constraints particularly stand out 

in design specification diversities. In one specification, an exact cardinality (1, 2, 3, ...) 

may be used, while a more general "many" (m) is being used in another. 
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Until this point, we have discussed the nature of semantic heterogeneity 

and identified the causes of such diversities. In the following sections, we present the 

details of a mechanism called Remote-Exchange, [Ref. 5 6] for resolving semantic 

heterogeneity. Although other to resolving semantic heterogeneity shows small yet 

significant differences, we believe that the Remote-Exchange mechanism can 

encompass all the rationales behind these approaches as well as the potential they 

possess. 

2.        Remote-Exchange Architecture 

Remote-Exchange is an architecture that supports the controlled sharing of 

information among a collection of autonomous, heterogeneous database systems. In 

Remote-Exchange, unification of remote objects with local objects plays a vital role. 

The four major components of Remote-Exchange are the core object data model 

(CODM), the remote sharing language (RSL), the local lexicon, and the semantic 

dictionary. Figure 5.1 [Ref.56] provides a schematic overview of Remote-Exchange. In 

the following sections, we introduce each component separately. (A detailed description 

of the role of each component is given in Section A.4.) 

a.        Core Object Data Model (CODM) 

Before any collaboration among the heterogeneous components of a 

federation is possible, a common model for describing the sharable data must be 

established. This model must be semantically expressive enough to capture the intended 

meanings of conceptual Schemas that may reflect several or all of the kinds of 
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heterogeneity mentioned above. Further, beside the richness of this model, it must also 

be simple enough so that it can be easily understood and implemented. For these 

reasons, the core object data model (CODM) has been selected as the common data 

model which is considered to be very rich and relatively simple. 

(  DBS    )     (  DBS    ) (  DBS    ) 

Core object data model (CODM) + Remote sharing language (RSL) 

Semantic 
Dictionary 

uses 
Sharing 
advisor 

Local 
lexicon 

Discovery 
Semantic 

Heterogeneity 
Resolution 

Unification 

Figure 5.1.   Remote-Exchange Architecture From [Ref.5]. 

CODM is a generic functional data model that supports the usual object- 

based constructs [Ref.56]. The model contains the basic features common to most 

semantic and object-oriented models. CODM supports complex objects (aggregation), 

type membership (classification), subtype to supertype relationships (generalization), 

inheritance of stored functions (attributes) from supertype to subtypes, and user- 

definable functions (methods) [Ref.56]. 
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Some advantages of using an object-based common model include its 

ability to condense the utility of shared objects [Ref.57], its capacity for expansion, 

[Ref.58], and object uniformity. [Ref.59]. Object uniformity is especially important for 

the unification phase, in which questions about the equivalence of actual data values, 

types, and operations can be posed. [Ref.59]. It should be noted that using an object- 

based common data model does not rule out the use of components from other data 

models, (e.g. relational data model). As stated earlier, translation functions ensure the 

participation and from the perspective of semantic integration, we do not consider it a 

serious problem. 

b.        Remote Sharing Language (RSL) 

The remote sharing language (RSL) is part of CODM. and provides a 

standardized interface to the conceptual Schemas of the participating components. RSL 

provides the capabilities to (1) pose queries to the metadata of selected databases in 

order to obtain structural information about type objects, (resolution) [Ref.56] and (2) 

enhance selected database schemas with remote objects, (unification) [Ref.56]. Table 

6.1 [Ref.56] presents a preliminary list of RSL commands. 
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RSL Command Description 

ShowMeta(d:DB) 

HasProperties(d:DB, t:Type) 

HasInstances(d:DB, t:Type) 

HasValue(d:DB, i:Inst, f: Func) 

Returns a list of all sharable types 

in database d 

Returns   a   list   of  all   functions 

defined on type tin d 

Returns a list of all instances of 

user-defined type rind 

Returns the value of function / on 

instance i in d 

HasValueType(d:DB, f: Func) 

Returns   the   value   type   for   a 

function/in d 

HasDirectSubtype(d:DB, t:Type) 

HasDirectSupertype(d:DB, t:Type) 

Returns a list of all direct subtypes 

of type fine? 

Returns    a    list    of   all    direct 

supertypes of type t in d 

ImportMeta(dl:DB,tl:Type, d2:DB, t2:Type) 

Integrates tl from dl into d2 at 

position t2 using relationship r 

Importlnstances (dl:DB,tl:Type, d2:DB, t2:Type) 

Copies all instances of type tl into 

a local t2 

Table 6.1. RSL Commands From [Ref.56]. 
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c.        Local Lexicon 

A foundation of remote-exchange and other similar methodologies is the 

ability to maintain semantic information about all the sharable objects in each 

component beyond the information that is already provided by the underlying schema. 

For this purpose, a local lexicon augments each component database system where it 

defines all type objects which it is willing to share with the other components. "The 

common vocabulary in which shared knowledge is in a lexicon draws some ideas from 

declarative knowledge representation forms such as the Knowledge Representation 

Language (KRL), semantic networks, and the Cyc knowledge base" [Ref.56]. In the 

remote-exchange approach, knowledge is represented in a local lexicon as a static 

collection of facts by the following simple form: 

<term> relationship-descriptor <term> 

The term on the left side represents the unknown concept that is 

described by the term on the right side. The set of descriptors can be extended and 

specify the relationships that exist between the two terms. Table 6.2 [Ref.56] indicates a 

preliminary list of conceptual relationship descriptors used in the Remote-Exchange 

mechanism. 
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Relationship Descriptor 

Identical 

Equal 

Compatible 

KindOf 

Assoc 

CollectionOf 

InstanceOf 

Common 

Feature 

Has 

Meaning 

Two types are the same 

Two types are equivalent 

Two types are transformable 

Specialization of a type 

Positive association between two types 

Collection of related types 

Instance of a type 

Common characteristic of a collection 

Descriptive feature of a type 

Property belonging to all instances of a type 

Table 6.2. Relationship Descriptors From [Ref.56]. 

The list of commonly understood terms is called an ontology, and as 

stated in previous chapters, ontology varies from one application domain to another 

application domain. For example, an ontology for a multidatabase system consisting of 

cooperating branches of the Navy is different from the ontology used by collaborating 

medical societies. An "ontology package" that consists of a general-purpose ontology 

(GPO) is put into a multidatabase system initially. Later, several special purpose 

ontologies (SPOs) can be added according to need of application domain. The GPO is 

application independent, and comprises a minimal working set (OF WHAT?) for each 

multidatabase system. [Ref.56]. 
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SPOs are application dependent and contain terms that cover specific topics. 

Both the GPO and SPOs are extremely dynamic, [Ref.56], meaning that their numbers 

of terms increase depending on vocabulary use by the participating components. The 

complete package is stored in the semantic dictionary. (We will present more on the 

ontologies in the next section when discussing semantic dictionaries.) 

Because interoperability has meaning among components that model similar or 

related information, "it is reasonable to expect a common understanding of a minimal set 

of concepts taken from the application domain among all the participants" [Ref.56]. If 

we give an example from a military context, an ontology package could be as follows: 

GPO = {Component, Name, Number, Item, Thing, Person, Vehicle,... } 

SPO (Military) = {War, Battle, Weapon, Ship, Cannon, Rocket, Missile, On 

duty...} 

SPO   (Navy)   =   {Submarine,   Destroyer,   Frigate,   Hull,   SAM,   Torpedo, 

Deployment, Patrol, CO, XO,...} 

The GPO includes all those terms common to all English-speaking 

components. SPO (Military) is a special purpose ontology containing terms taken from 

the general military environment. SPO(Navy) contains terms used specifically in the 

Navy. As an example, consider a database about the Navy including the attributes, 

"ShipName, TorpedoType, PatroledBy, TaskGroup, Corvette" under different tables. A 

lexicon belonging to this database would be similar to the one in Table 6.3. 
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Term Relationship Descriptor Key Concept 

ShipInternationalName Equal Name 

TorpedoType Identical Torpedo 

PatroledBy Kind of On Duty 

TaskGroup CollectionOf Ship 

Corvette Compatible Frigate 

Corvette Compatible Destroyer 

Table 6.3. Local Lexicon 

The underlying principle of the lexicon is to define and introduce new 

terms so that they can be understood by other components in the collection. Thus, local 

lexicons portray the real-world meaning of sharable objects so that the structural 

representation complements the definitions given in the conceptual schema. [Ref.56]. 

d.        Semantic Dictionary 

While local lexicons contain semantic descriptions about local, sharable 

data, they do not contain any knowledge about relationships among descriptions in 

different, independent lexicons. This information is collected in a global repository 

called a semantic dictionary. Like the local lexicon, the semantic dictionary is dynamic, 

meaning that its content is updated whenever new or additional information is made 

available, (e.g., after a relationship between two similar remote types has been 

established) [Ref.56]. 
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Related types from different components that have been identified are 

grouped into a collection called a "concept". Furthermore, subconcepts can be identified 

within different subcollections, and this generates a concept hierarchy. In a sense, the 

semantic dictionary "represents a dynamic federated knowledge base about the different 

relationships existing among the sharable objects in a federation."[Ref.56]. 

In addition to the concept hierarchy of sharable objects, the semantic 

dictionary also contains the ontology package described earlier, as well as a list of 

relationship descriptors. These descriptors are used in local lexicons to describe 

relationships between unknown objects and terms from the ontologies. It merits 

consideration that the ontology package is in some ways collection of local ontologies. 

Only general-purpose ontology is not repeated in the semantic dictionary since it is 

common to all components. If we consider a MDBS used by all branches of the 

military, a semantic dictionary for this collaboration would be similar to the one in Table 

6.4. 

SPO 

Military 

SPO Navy SPO Army SPO Air Force 

SPO             Training 

GPO 

Table 6.4. Semantic Dictionary. 

As we said, the GPO in the package is static, but the SPOs are dynamic 

and can be updated over the lifetime of the federation.   The GPO and SPOs taken 
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together provide the components with a vocabulary that describe the application areas of 

the database systems involved. As a result, the resolution mechanism in Remote- 

Exchange works best if all the components have a similar background, thus reducing the 

need for many additional SPOs, or SPOs with many terms. If we extend our sample 

MDBS to include other organizations such as some departments in the government, we 

should add their respective ontologies which means increasing the burden on the 

semantic dictionary. 

3.        Resolving Representational Heterogeneity in Remote-Exchange 

The main reason for the relatively slow progress in the area of resolution is that 

heterogeneous databases provide a wide range of vocabulary and name usage that is 

inherently difficult for computers to "understand." The narrower the domain (i.e., the 

higher the degree of commonality in the vocabularies and the closer the relationships 

among objects), the higher the chances of successful resolution. Currently, the process 

of resolution of representational diversity is still only partially automated and requires 

human interaction at many points. 

To determine the relationship between objects within a broader context, instead 

of a single method (e.g., schema resolution based on structural knowledge-see [Ref.60]), 

a combination of several different approaches taken together is offered in [Ref.52]. In 

[Ref.52], it is asserted that structural information alone will not be sufficient to resolve 

inter-object relationships. So, the authors have augmented the conceptual schemas of 

participating components with additional semantic information describing the usage of 

sharable objects in their application environment. 
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We now describe the remote-exchange approach for resolving semantic 

heterogeneity, namely, determining relative object equivalence. The meanings of 

concepts unknown to other components are determined using the RSL, in addition to a 

local dictionary or lexicon, as well as the semantic dictionary. [Ref. 5 6]. RSL commands 

return structural information about an object (e.g. supertype, subtype(s), properties, etc.). 

The local lexicon, which is created and updated by each component separately, 

contains the semantic description of every sharable type object in the database. In order 

to make the local lexicons usable through the entire federation, a common knowledge 

representation is used. Unknown terminology can be located and compared with known 

terminology. [Ref.56]. The semantic dictionary describes the relationships between 

terms in the local lexicons. Figure 5.2 [Ref.56] shows the interactions among these 

components. 

As mentioned in previous chapters (in the architecture of federated databases), 

for components to protect their private data from the rest of the federation, sharable 

objects must be placed in a special section of the conceptual schema, namely export 

schema. Everything that is not part of the export schema is invisible to the rest of the 

federation. 

Before discussing the details of the remote-exchange approach to resolve 

representational heterogeneity, we review the various relationships that can exist among 

object that model the real-world concepts in different participating components. 
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a. Common Concepts 

As a result of different causes for schema diversity mentioned earlier, the 

concepts of an application domain may be modeled by different representations, say Rl 

and R2. If we remember our "ship" example, the ship object may be represented by its 

international name (Int-Name) in one data source while being represented by its hull 

number (HullNo). In addition to the obvious naming differences, both objects mirror 

closely related real-world information, but use different type constructs (string vs. 

umber) in their representations. Several types of semantic relationship can exist 

between two representations Rl and R2. They may be identical, equivalent, compatible 

or incompatible. 

Local 
Lexicon 

Local 
Lexicon 

CODM Interface+RSL 

Local 
Lexicon 

Logical 
Connection 

Sharing 
Pattern 

CarnpcawrtB $ augmented 
schema after irtegraticnof 

Figure 5.2. Representational Heterogeneity Resolving Mechanism From [Ref.56]. 
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1. Identical: Rl and R2 are the same. This situation occurs 

when the same modeling constructs and perceptions are used and applied, and when no 

extraneous information enters into the specification [Ref.55]. For example, in our 

sample lexicon table, "TorpedoType" and "Torpedo" are identical because they both 

represent the same real-world objects and type structures are the same (both use strings 

to model the information). This type of relationship between two representations Rl and 

R2 is expressed using the Identical relationship descriptor. 

2. Equivalent: Rl and R2 are not the same because different 

modeling constructs have been applied. For example, even though "HullNo" and 

"IntName" both represent the real-world object "ship", one uses alphanumeric characters 

and the other uses a domain of four letter strings. This kind of relationship between two 

representations Rl and R2 is expressed using the "Equal" relationship descriptor. 

3. Compatible: Rl and R2 are neither identical nor 

equivalent. However, their representation is not contradictory. For example, a corvette 

and destroyer actually represent different real-world objects, however there is a lower 

upper bound for them that both can be transformable to that bound. A "warship" or 

"ship" object may be lub. The relationship between these two representations Rl and 

R2 is expressed using the Compatible relationship descriptor. 
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4. Incompatible: Rl and R2 are contradictory to each other 

because of the fundamental differences in the underlying information. They have 

neither a common context nor a common domain. As far as we see, in remote-exchange 

approach, all relationships except the ones defined by a relationship descriptor are 

accepted incompatible by default. However, we believe that there must have been a 

descriptor to indicate incompatible relationship. To conclude that two objects are 

incompatible, the lexicon must be scanned end-to-end, and this brings an extra burden to 

the system. At least a cache-like mechanism could hold this information and the lexicon 

would not be scanned completely every time when resolution is required. 

b.        Related Concepts 

In addition to common concepts, we can list the following most 

commonly used types of interschema (binary) relationships: 

1. Generalization/specialization: Generalization is achieved 

when two or more types are untied producing a higher level type. [Ref.52]. In our 

example, "warship" is the generalization of "destroyer" and "corvette". Specialization is 

the opposite of generalization. The relationship descriptor that represents 

generalization/specialization is called KindOf. We can say that specialization from a 

generic object produces compatible objects. 

2. Positive association: It is impossible to accurately classify 

every type of relationship capable of existing between objects. [Ref.56]. This category 
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includes concepts that are "synonyms" in some context, for example, "ship" and "boat". 

The relationship descriptor that represents positive associations is called Assoc. 

c.        Strategy for Resolving Object Relationships 

The basic function of the resolution mechanism is to return the 

relationship that exists between two given objects, a local and foreign one. Specifically, 

the resolution strategy of remote-exchange is based on (1) structural knowledge or the 

conceptual schema, and (2) the known relationships existing between keywords and the 

two objects in question. [Ref.56]. One characteristic of the approach is that the majority 

of user input is introduced before (as opposed to during,) the resolution step (i.e., when 

selecting the set of keywords and creating the local lexicon). [Ref.56]. So we can say 

that remote-exchange is highly static. 

Now, let us refer to our Navy example. Assume we have two separate 

data sources, one of them keeps information about the destroyers (schema A) and the 

other keeps information about the submarines (schema B). In Figure 5.3, we gave a 

pictorial description of parts of two local lexicons belonging to Schema A and Schema 

B, respectively. In the same picture, we also gave a subpart of the concept hierarchy in 

the semantic dictionary. 

Looking at A's lexicon, we can see that the property Commanded-By is 

equivalent to concept "■Commanding Officer" in the ontology packet. Similarly, in 

Schema B, "Captain" and "Name" combination is equivalent to the concept, 

"Commanding Officer." Therefore, "Commanded-By and the type property 

combination o?" Captain" and "Name" must be equivalent. 
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Figure 5.3. Resolution of Representational Heterogeneity Between. 

With respect to the resolution of representational heterogeneity, all 

information about the structure of a type object is provided through selected RSL 
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commands-an approach perceived as a variation to the typical model of behavior 

encapsulation in object-oriented programming languages. [Ref.56], Instead of 

encapsulating behavior, these commands encapsulate the structure of a type object. The 

advantage of this approach is that RSL commands are basically computed (or foreign 

functions) in the data model of remote-exchange architecture, and can be part of each 

component's schema without modifications to the underlying schema. 

4.        Sharing 

The Remote-Exchange architecture provides three services to its multidatabase 

components: an intelligent sharing advisor, resolution of representational heterogeneity, 

and sharing [Ref. 52]. When a new component initially participate the federation, that 

component must first register by initiating the sharing advisor. [Ref.56]. The sharing 

advisor enters the data that the component is willing to share into the semantic 

dictionary so that it can be seen and used by other components. After the component 

registers with the sharing advisor and defines its sharable type objects using the common 

terminology in the semantic dictionary, it is then ready to information exchange. 

"Sharing takes place on a component pair-wise basis when the sharing advisor has 

located the sources of relevant information. 

The importing component selects those relevant foreign objects that it wants to 

integrate into its local framework. [Ref.56] Given a foreign object, a related local 

object, and the relationship between the two, the sharing tool places the foreign object 

(including its instances and stored functions) into the appropriate place in the local 
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metadata framework (type hierarchy). At this point, the unification is complete, and the 

newly imported object can be used by the remote component. 

B.        SCHEMA INTEGRATION 

Even though we mentioned the approaches to database integration many times in 

previous chapters, we briefly summarize them here: 

Two popular approaches to heterogeneous database integration are the global 

schema approach and the federated schema approach. In the global schema approach, 

Schemas corresponding to each local database are combined into a single integrated 

schema. In the federated approach, each local database provides an export schema (a 

portion of its schema that it is willing to share with other databases). 

The schema integration process, which means generating one or more integrated 

Schemas from existing Schemas, is the core of these approaches to provide 

heterogeneous database interoperability. These Schemas represent the semantics of the 

component information sources that are being integrated, and are used as inputs to the 

integration process while the output of the process is one or more integrated Schemas 

representing the semantics of the underlying databases. The output Schemas are 

represented using a common data model, and are used to formulate queries that might 

need to span multiple databases. The Schemas hide any heterogeneities that are result 

from (1) schematic differences in the underlying databases, or (2) differences in the data 

models which they are based upon. [Ref.52]. 
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The term schema integration is used to refer to methodologies that facilitate the 

integration of Schemas as defined above, and is typically used in the design of a new 

database schema. In addition, it is used to refer to view integration. However, the two 

processes differ in important ways: 

• View integration is the process of generating a single integrated schema 

achieved by generating the integrated schema corresponding to the 

multiple user views, and then designing the database corresponding to 

that schema. [Ref.62]. So, we can say that view integration is used in 

top-down database design, whereas schema integration is a bottom-up 

process because it attempts to integrate existing databases. 

• In view integration, users define views by using a unique single data 

model. But, in schema integration, since the underlying databases can be 

heterogeneous, the Schemas to be integrated may be represented using 

multiple data models [Ref.62]. 

• User views do not reflect existing data in a database. However, in 

schema integration, the integrated Schemas represent existing databases. 

We believe that this is an important distinction, because the schema 

generated after the schema integration process cannot violate the 

semantics of the existing databases.    However, in view integration, 
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because the views don't represent the real objects, there may be more 

flexibility in the interpretation of their semantics. 

Schema integration is a complicated and time-consuming task, primarily because 

most schematic representations cannot completely capture a database's intended 

semantics. [Ref.52]. Hence, the process of schema integration requires extensive 

interaction with database designers and administrators to understand the exact semantics 

of the databases. Otherwise, the semantics of the integrated schema may violate the 

semantics of the underlying databases. In [Ref.63], it is asserted that the necessity of 

this extensive interaction with the database designers and the administrators makes fully 

automated schema integration process impossible. We agree with this idea, because 

even a very developed expert system can not represent the ideas of a large group of 

peoples who design and administer information sources. Knowledge engineers, who 

interview the real experts in their own domains, design expert systems. 

As we said in Chapter HI, representing knowledge and establishing the 

knowledge base of an expert system is not a trivial matter. Since it is impossible to 

interview with all the experts in one domain of interest, all the knowledge can not be 

represented. In the schema integration process, this knowledge corresponds to the way 

of design of database designers, more precisely their intentions. This difficulty is 

evident when considering the natural language spoken by databases. 

Database designers and administrators would like to use words, phrases, and 

abbreviations they use in their daily life. Even we assume, for instance a very rich 

thesaurus is used to cover all words, phrases etc. used in a natural language, this 
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thesaurus would be error free and cannot represent the possible errors that can be made 

by careless designers and administrators. However, as we will discuss in later sections 

in this chapter, tools can be developed that can reduce the amount of human interaction. 

It should also be noted that schema integration is not a one-shot process. Since 

the integrated schema represents the real data (from underlying databases), changes to it 

may be needed for these reasons: 

• Changes in the database structure that result in changes to the underlying 

Schemas, 

• Changes in the constraints specified on the underlying databases, and 

• Changes to data values due to additions, modifications, or deletions in the 

underlying databases. [Ref.52] 

As a result, we can say that a desirable property of any schema integration 

approach is that it should also be able to dynamically handle changes to the underlying 

databases. 

In the rest of this section, we present a framework for schema integration, 

various steps in schema integration. We also discuss how the schema integration process 

can be automated and present several automated software tools. 
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1.        Schema Integration Framework 

First we outline the steps of a typical methodology for schema integration, and 

then we present a classification of the various integration strategies that have been used. 

a.        Steps in Schema Integration 

A typical schema integration methodology can be divided into four 

phases [Ref.64]. The steps, shown in Figure 5.4, are as follows: 

Schema 
translation 

Schemas 
integrate 

tobe 
d 

1 ' 
Inters chema 
relationship 

identification 

Schematic 
interschem' 
relationship 

Confirmed 
interschem: 
relationship 

i 

Designer/expert 
input 

i 

i 

Integrated 
schema 

generation 

i ' 

Schema 
mapping 

generation 

Figure 5.4. Steps in Schema Integration Methodology. 
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1. Schema translation: In this phase, Schemas that 

correspond to the individual databases are translated into Schemas using a common 

model. Generally, a semantic model (such as entity-relationship model) is used for this 

purpose. 

Figure 5.5 [Ref.52] shows an example of a relational and a network 

database. The Schemas are examples of databases that may exist in a bank such as Navy 

Federal Credit Union or Monterey Credit Union. The first database contains 

information about customers and their accounts in the bank. The second database keeps 

track of loans issued to borrowers. The translation of these Schemas may be performed 

manually or with the aid of a translation tool. However, even with the use of a 

translation tool, it is likely that some manual interaction with the tool is needed. Any 

schema translation technique should have the following characteristics [Ref. 64]: 

a) The schema represented by the common model should 

include the complete semantics of the underlying database, and 

b) A command on the translated schema must be 

translated into commands on the original schema. Figure 5.6 [Ref.64] shows the 

translated ER representations of the Schemas in Figure 5.5. 
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(a) 

CUSTOMER (SSNo, FName, LNarne, Address, PhNo, NYears, CR) 

ACCOUNTS (AcctNo, Balance, Type, CustNo) 

(b) 

IDNo       First Last Address   PhNo        CR NYears    NLoans 

Figure 5.5. Local Schemas (a) database 1 (relational) and (b) database 2 (network). 

(a) 

CUSTOMER ACCOUNT 

0>) 

BORROWER 
LOAN 

Figure 5.6. ER Representation of Translated Schemas (a) database 1      (b) database 2 
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2. Schematic interschema relationship generation: "The 

goals of this phase are to (1) identify objects that are potentially related in the underlying 

Schemas (i.e., entities, attributes, and relationships), and (2) categorize the relationships 

among the related objects. [Ref.64]. This is done by examining the semantics of the 

objects in components and identifying relationships among them based on their 

semantics. The semantics of an object can be determined by analyzing schematic 

properties of entity classes, attributes, and relationships in the schema, but these 

properties can give only some partial semantics. For example, "integrity constraints, 

cardinality, and domains are properties of attributes that convey their partial semantics" 

[Ref.64]. 

To obtain the exact semantics, as stated before, interaction with 

the designers and administrators is required to exploit their knowledge and 

understanding of the application domain. The main goal of this step is to create a 

reliable set of relationships among database objects. [Ref.64]. The accuracy of the 

characterizations of these relationships is very important, because they are used as input 

to the integrated schema generation phase (the phase after this phase). For example, in 

Figure 5.6 [Ref.64], we would identify the two entities CUSTOMER in part (a) and 

BORROWER in part (b) as related to each other. In addition, we can classify the 

relationship as being a sub-sumption relationship [Ref.64]; (i.e., the set of borrowers in 

the second database is a subset of the set of customers identified in the first database.) 

Finally, we should identify attributes in the two entity classes that may be related. 
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3. Integrated schema generation: In this phase, the 

interschema relationships generated previously in the second phase are used to generate 

an integrated representation of the underlying Schemas—a task that involves resolving 

different forms of heterogeneity that might exist between related objects. [Ref.64]. In 

their paper, Sheth and Kashyap [Ref.65] classify these heterogeneities into five major 

categories: domain definition, entity definition, data value, abstraction level, and 

schematic incompatibilities. 

The integrated schema generation process resolves these forms of 

heterogeneities and generates an integrated schema that appears homogeneous to the 

user. In our example, in the integrated schema in Figure 5.7, a sub-sumption 

relationship between CUSTOMER and BORROWER is generated to reflect the nature 

of the relationship among these entity classes. Note that the attributes SSNo and EDNo 

have been integrated into a single attribute (CustNo) in the superclass. This type of 

integration assumes that these attributes have been identified as being equivalent to each 

other in the interschema relationship generation step. 
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CustNo Phame   LNmae 

Address 

BORROWER 

ACCOUNT 

Figure 5.7. Integrated Schema. 

4. Schema mapping generation: This step accompanies the 

integrated schema generation step and entails the storing of information about mappings 

between objects in the transformed (or integrated) Schemas and the local Schemas. 

[Ref.64]. Such mappings are important for query transformation. For example, we 

would need to note that the attribute CustNo in the integrated schema (Figure 5.7) maps 

back to SSNo in Database 1 and EDNo in Database 2. 
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CustNo Fname LNmae 

Address PhNo 

BORROWER 

ACCOUNT 

Figure 5.7. Integrated Schema. 

b.        Classification of Schema Integration Strategies 

Elmagarmid and Sheth [Ref.52] classify the primary properties that 

distinguish integration strategies in the literature as (1) the abstraction level at which 

integration is attempted, and (2) the semantics conveyed by the input Schemas. 

(1) Classification Based on Abstraction Level: Integration 

methodologies presented so far in the literature can be classified as operating at one of 

three levels: the user view level, conceptual schema level, or data level. 

Among these, the most common level is the user views level. The 

objective of view integration methodologies is to integrate several user Schemas 
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(representing users' views of a database) into a single integrated schema [Ref.61]. 

Generally, users' views are represented by using a common data model. As a result, 

these methodologies will not likely require the schema translation step. [Ref.61]. 

Furthermore, most of the intended semantics are represented by the schema itself since 

the views do not represent an existing database. [Ref.52]. 

User views can be created dynamically as well as statically, but 

for this a multidatabase language is required. (While the multidatabase languages are 

not mentioned in this chapter, a brief informational summary can be found in Chapter 

II.) The integrated schema (from the views of users) could then be used as the stepping 

off point for designing a new database. Examples of view integration methodologies can 

be found in Batini et al. [Ref.55], Navathe and Gadgil [Ref.66], Batini and Lenzerini 

[Ref.67], Biskup and Convent [Ref.68], Navathe et al. [Ref.69], Shoval and Zohn 

[Ref.70], and Gotthard et al. [Ref.71]. 

Methodologies that operate at the conceptual schema level 

generate one or more integrated Schemas from the Schemas in the local databases. 

[Ref.52]. To achieve this objective, the methodologies must be able to manage the 

existence of both structural and semantic heterogeneity in the underlying databases." 

[Ref.64]. 

Methodologies at this level can be divided into two classes 

[Ref.64]: 

a) Schema restructuring methodologies: Those 

methodologies that generate integrated Schemas by applying schema restructuring 

operators  to  the underlying  databases.   Some  examples  of schema restructuring 
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methodologies include El-Masri et al. [Ref.72], Larson et al. [Ref.73], and Spaccapietra 

et al. [Ref.74]. 

b) View generation methodologies: Those 

methodologies that generate an integrated representation by developing views or 

defining queries on the local databases of interest. Examples of approaches using the 

view generation methodology can be found in Kaul et al. [Ref.75], Ahmed et al. 

[Ref.76], Bertino [Ref.77], and Kim and Seo [Ref.78]. 

Application of any of these methodologies to the Schemas in 

Figure 5.6 (representing local Schemas after translation) would result in an integrated 

schema similar to that shown in Figure 5.7. Thus, the primary difference between 

schema restructuring strategies and view integration strategies is the fact that "in schema 

restructuring methodologies, the Schemas being integrated are derived from 

heterogeneous data models and represent one or more underlying databases" [Ref.52]. 

In our example, if we relax the restriction that all borrowers have 

an account with the bank, we would follow two steps to generate an entity class 

representing the set of all customers who are associated with the bank. First, we define a 

query on the CUSTOMER and BORROWER entity classes from the underlying 

databases, and second, create a supertype entity class called ALL-CUSTOMER. Figure 

5.8 [Ref.64] shows the view and the query that can result in such a view being 

generated. 
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View Creation Query 

CREATE TYPE ALL_CUSTOMER 

SUPERTYPE OF CUSTOMER, BORRO'WER 

ALL_CUSTOMER 
Mapping function needed to map 
CustNo to IDNo and SSNo 

S 
SSNo               > 

1             / 

/ '   N S 
S.             IDNo 
\             1 

CUSTOMER BORROTOR 

Figure 5.8. View Generation Using a Query. 

It should be noted that if the SSNo and IDNo fields in the 

CUSTOMER and BORROWER entity classes are different, we may have to define a 

new attribute called CustNo and define a function that maps CustNo to EDNO and 

SSNO. 

The primary difference lies in the static nature of schema 

restructuring and dynamic nature of view generation. [Ref. 52]. An integrated schema 

generated using schema restructuring is a representation that reflects schema definitions 

at the time integration was performed. Therefore, any changes made to the underlying 

databases affecting the Schemas will require that the integration process be repeated. 

[Ref.52]. The view generation approach is more dynamic because the integrated 

representation is generated by defining a view on the local Schemas. As a result, if the 
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Schemas change in such a way that the existing view is affected, the only thing which 

must be redefined, is the new view. [Ref.52]. For example, if the bank wanted to merge 

information about its money market account customers (maintained separately) with the 

rest of the databases, we would define a new view to include customers with regular, 

loan, and money market accounts, as shown in Figure 5.9. 

View Creation Query 

CREATE TYPE ALL_CUSTOMER 

ST7PERTYPE OF CUSTOMER, BORROWER, MM_CUSTOMER 

ALL_CUSTOMER 
Mapping function needed to 
Map CustNo to IDNo, SSNo, and 
ClienflD 

< 
S 

;SNb                > 
1       X 

• / s 
IDNo 

1 
^Sw           ClienflD 
\.             1 

CUSTOMER BORROWER MM_CUSTOMER 

Figure 5.9. New View Generation Using a Query. 

The third class of integration methodologies operates at the data 

level. This class of methodologies relies on actual data values to achieve integration. 

[Ref.52]. Much of the work at this level has focused on integrating relational databases. 

We can find instance-level integration strategies in DeMichiel [Ref.79], Chatterjee and 
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Segev [Ref.80], and Prabhakar et al. [Ref.81] fall into this category.    Data-level 

methodologies address two main problems [Ref.52]: 

• Entity identification: How does one identify 

representations of the same real-world entity in different databases? 

• Attribute-value conflicts: How does one deal with 

differences in data values among attributes that represent the same real-world entity? 

These differences may be caused by differing attribute domains as well as differences in 

the actual data values stored in the databases. [Ref.52]. 

For example, let us assume we are trying to generate a relation 

that represents the list of customers with outstanding loans. This list could be generated 

by defining an intersection of the two databases which are shown in Figure 5.10 

[Ref.52]. The process of intersection is relatively easy if the two relations share a 

common key. Generating an integrated relation requires that we identify, for instance, 

that two tuples represent the same person. 

However, consider the tuples shown in Figure 5.10. It is clear 

that tuple 1 in the CUSTOMER relation and tuple 2 in the BORROWER relation refer to 

the same entity. But because the SSNo and IDNo do not match, they cannot be used as 

the only source of identification for matching tuples. The combination of last and first 

names also cannot be used because more than one customer will have the same 

combination. Thus, "differences in data and the lack of a key can make identifying 

related tuples and performing a join difficult" [Ref.52]. 

Instance-level integration deals with resolving such 

incompatibilities.   It should be noted that "changes to the data values may void any 
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integration performed previously" [Ref.52].  Thus, instance-level integration strategies 

are dynamic in nature. 

SSNo FName LName Address PhNo 

123123123 John Doe lllBrownell 5553333 
213222111 Bob Smith 21 Broadway 5552323 
565656566 John Doe 13Moran 5559393 

IDNo First Last Address PhNo 

5008 John Doe 13Moran 9393 
6005 John Doe lllBrownell 3333 
1010 Jane Smith 233 Leahy 3535 
5009 Bob Smith 21 Broadway 2323 

Figure 5.10. Instance Level Integration Problem Between Two Relations. 

Another technique that falls into the data-level category deals 

with semantic integrity constraints and their use in schema integration. Ramesh and 

Ram [Ref.82] presents a methodology that describes how integrity constraints from 

multiple databases can be combined to develop constraints at the global/federated 

schema level, and the use of these integrated constraints in semantic query processing. 

(2) Classification Based on Data Model of Input Schemas: 

Highly dependent on the semantics conveyed by the local Schemas, strategies for 

schema integration are directly related to the type of data model used to represent the 
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local Schemas.  Four models have been used to represent the local Schemas: relational 

models, semantic models, object-oriented models, and logic-based models. 

a) Approaches based relational models: The earliest 

schema integration methodologies used relational models to represent the local schemas. 

The drawback of using a relational model is its limited power to express natural 

language, which results in an inadequate representation of semantics by the schemas. 

[Ref.52]. However, the commonality of relational databases and the simplicity of the 

relational model made the relational model and relational databases ideal starting points 

for new research. The examples of the prototypes and methodologies are described in 

Deen et al. [Ref.82], Templeton et al. [Ref.84], Chung [Ref.85], and Kim and Seo 

[Ref.78]. 

b) Approaches based on semantic models: 

Approaches based on semantic models use variants of the entity-relationship model to 

represent local schemas and the integrated schemas. Larson et al. [Ref.86], Shoval and 

Zohn [Ref.70], Spaccapietra et al. [Ref.74], and Sheth et al. [Ref.87] are examples of 

methodologies that belong to this category. The primary reason for using semantic 

models is that they, as compared to the relational models, can more richly express 

semantics. [Ref.52]. Since semantic models are most commonly used to represent views 

and conceptual schemas, most of these methodologies fall into the user view/conceptual 

schema-level categories of the previous classification. 
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c) Approaches based on object-oriented models: 

Some of the methodologies in this category attempt to integrate methods along with 

Schemas. They also deal with integration of complex attributes and object hierarchies. 

Most of these methodologies fall into the view integration/conceptual schema 

integration category presented above. Examples of methodologies in this category can 

be found in Bertino [Ref.77], Czejdo and Taylor [Ref.88], Kaul et al. [Ref.75], Geller et 

al. [Ref.89], Gotthard et al. [Ref.71], and Thieme and Siebes [Ref.90]. 

d) Approaches based on logic: Among all these 

categories, the latest are the logic-based approaches, representing a natural step in the 

development of schema integration methodologies. First-order logic is shown to be 

capable of formally representing the semantics of relational databases. [Ref.52]. Using a 

logic-based approach also provides the capability of capturing more semantics than is 

possible using semantic models. For example, logic-based models enable us to express 

semantic integrity constraints, explicit user-defined integrity constraints deemed useful 

in query transformations. [Ref.91]. 

Ramesh and Ram [Ref.92] describe how semantic integrity 

constraints can be used to facilitate schema integration. Whang et al. [Ref.93] also note 

that it is easier to translate relational Schemas to logic-based Schemas than to semantic 

models. 
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2.        Techniques for Interschema Relationship Identification (IRI) and 

Integrated Schema Generation (IGS) 

In this section, we summarize the approaches to the interschema relationship 

identification (IRI), integrated schema generation (ISG), and schema mapping 

generation steps of the schema integration process. 

We classify IRI techniques based on the abstraction level that defines the nature 

of the semantic knowledge available with regard to the databases and applications. 

[Ref.52]. Contrarily, the discussion on the ISG techniques center around the data model 

used, because the characteristics of the data model, its semantics, and the heterogeneity 

in the representation of the underlying databases are the primary factors affecting the 

ISC process. So, we focus on the methodologies belonging to the conceptual schema and 

data-based approaches. 

Since schema mapping generation is relevant primarily in the context of 

approaches based on conceptual models, discussion on schema mapping generation 

focuses more closely on the differences in schema restructuring and view generation 

approaches. 

a. Interschema Relationship Identification (IRI) 

The objective of the IRI phase is to identify objects in the underlying 

schemas that may be related and to classify the relationships among them. 

(1)      Approaches   Based   on    Conceptual   Schemas:       IRI 

techniques based on conceptual schemas use a two-phase process consisting of (a) 
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identifying objects that are related and, (b) classifying the relationships among these 

objects. 

The first phase implies the extraction of the intended semantics of 

the objects in databases, and the identification of objects that are semantically related. 

[Ref.52]. After a potential set of related objects are identified, the second phase 

activates to classify these relationships into various categories. As we said before, the 

inability of existing data models to represent the true semantics of the real-world objects 

in databases causes this phase to require extensive interaction with designers or 

administrators of the database specific to application domain. 

Approaches based on conceptual Schemas use the knowledge 

represented in the schematic constructs to determine the relationships between objects. 

[Ref.52]. Primary schematic constructs are entity classes, attributes, and relationships. 

In Larson's paper [Ref.73], the various properties (uniqueness property, lower and upper 

cardinality constraints, domain, static and dynamic integrity constraints, security 

constraints etc.) of an attribute are used to establish relationships among attributes of 

two different entities from different databases. According to Larson [Ref.73], when the 

attributes of different entities are compared on these properties, they provide definitions 

for assessing the degree of equivalence of the attributes. 

For example, entity classes could be compared on the basis of 

their names and the description of their roles in the database. Relationships could be 

compared on their names, cardinality, and the similarity of other participating entity 

classes.   Thesaurus mechanisms and highly developed dictionaries could be used to 
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support the comparison of names, roles, etc. [Ref.73]. The process itself can be done 

manually, or it can be partially automated. (Tool kits that perform automated 

interschema relationship identification are introduced in subsequent sections.) 

The aim of analyzing these Schemas is to identify semantically 

related objects. However, these schemas must not only identify but also classify the 

relationships among related objects. [Ref.52]. The classification generated is dependent 

on the methodology used. Although different methodologies generate different 

classification, here we only show Larson's [Ref.73]. 

Larson [Ref.73] generates four types of equivalences between 

attributes. These are: 

a EQUAL b, 

a CONTAINS b, 

a CONTAINED-IN b, and 

a OVERLAP b. 

He  defines  five types  of relationships  among  entities  and 

relationships: 

A EQUAL B, 

A CONTAINS B, 

A CONTAINED-IN B, 

A OVERLAP B, and 

A DISJOINT B. 

155 



Users are asked to indicate one of these types of relationships for 

every entity/relationship that may have equivalent attribute relationships. [Ref.73]. 

(2) Approaches Based on Data: The objective of most IRI 

techniques using the data-based approach is to distinguish instances of entity classes 

referring to the same real-world entity in different databases. [Ref.52]. The simplest 

approach assumes that relations from different databases have a common key. So it can 

be said that, the tuples that have a common key representing the real-world entity. In 

cases where there is no common key available, different probabilistic theories have been 

adopted. For example, some techniques try to evaluate the probability that two tuples 

refer to the same real-world entity only by comparing the key attributes, or by 

comparing all attribute values. 

b.        Integrated Schema Generation (ISG) 

Since the ISG phase is mainly affected by the data model used, we 

examine the approaches based on data models, namely semantic model approaches, 

object-oriented model approaches, and logic-based approaches. 

(1) Semantic Model Approaches: As previously mentioned, 

there are mainly two schema integrating methodologies: (1) schema reconstructing 

methodologies and (2) view generation methodologies. Since data language capabilities 

are the primary concern in view generation methodologies, we focus on ISG techniques 

used in schema restructuring methodologies. 

156 



The main problem is to generate an integrated representation of 

independent Schemas that reflect the semantics of the underlying databases. The 

primary technique adopted for achieving the integrated representation is to create 

generalization-specialization relationships in the integrated schema. [Ref.52]. The 

schema in Figure 5.7 is an example of this integration. 

Larson [Ref.73] presents an approach to schema integration that is 

based on the idea that any pair of objects can be integrated if their identifying attributes 

can be integrated. As we discussed in the previous section, Larson defines four types of 

relationships between attributes (i.e. EQUAL, CONTAINS, CONTAINED-IN, and 

OVERLAP). Entity class and relationship equivalence are then defined in terms of 

relationships between identifier attributes. Rules for integrating entity classes and 

relationships belonging to each category are presented along with rules for integrating 

attributes. Also, he presents general guidelines for transforming related objects into 

objects in the integrated schema. Since an object is typically linked with other objects in 

the schema, in order to generate a correct integrated schema, the transformation may 

require that changes be made to the links between objects. [Ref.73]. 

The rules for integration do not handle the naming conflicts. They 

must be handled differently. Naming conflicts present themselves in two forms: First, 

when two unrelated objects share the same name, one of the objects needs to be 

renamed. And second, equivalent objects have different names; in this case, a decision 

must be made as to which name should be used in the integrated schema. 

Structural conflicts arise when either (a) two related objects are 

defined using different data model constructs or (b) two related objects use the same 
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construct with different properties. [Ref.52].   For example, in Figure 5.7, IDNo and 

SSNo represent related attributes, but they may have different properties. 

Most methodologies for schema integration address the structural 

conflict problem. Spaccapietra [Ref.74] presents a methodology for the integration of 

any two types of objects. He views a schema as a graph with edges and nodes. 

Relationships between objects in the schema are specified using correspondence 

assertions (see Chapter V). A methodology for resolving structural conflicts is also 

presented in Bouzeghoub and Comyn-Wattiau's work [Ref.94]. They deal with another 

problem, integrating differing constraints, such as cardinality constraints and key and 

functional dependencies, during schema integration. 

(2) Object-Oriented Approaches: Object-oriented approaches 

deal with all the issues relevant to approaches based on semantic models as well as some 

additional concerns. The general trend is to use object-oriented Schemas as the input 

Schemas to a view integration algorithm. Other issues dealt with by object-oriented 

techniques are summarized in two [Ref.52]: 

• All   00   approaches   develop   mechanisms   for 

integrating class hierarchies that represent a set of classes exisiting in 

generalization/specialization relationships [Ref.90], (such as in our example Borrower 

IS A Customer). Recursive hierarchies (an attribute in one of the classes has another 

entity class as its domain) may further complicate such a class hierarchy. [Ref.52]). 
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Thieme and Siebes [Ref.90] present techniques for integrating class hierarchies on the 

basis of semantic and structural equivalence of the classes in the hierarchy. 

• The   methodologies   have   to   deal   with   the 

integration of methods. Two resulting tasks are (1) new methods may need to be 

defined for the integrated view and (2) preexisting methods in the entity classes being 

integrated may need to be integrated. 

Because existing methods may differ in name and 

parameters, techniques for resolving these differences need to be developed. 

(3) Logic-Based Approaches: Work on using logic-based 

approaches for schema integration is still in its early stages. Logic-based approaches are 

desirable because of the way semantics can be conveyed using a logic-based 

representation. [Ref.52]. Also, it should be noted that the use of expert systems in 

semantic heterogeneity resolution rose in popularity after the advantages of logic-based 

representation became apparent. In subsequent paragraphs, we examine the first viable 

logic-based approaches in the literature. 

Whang et al. [Ref.95] describe a rule-based approach to schema 

integration. Each of the local Schemas being integrated is represented as a schema using 

first-order logic. These databases constitute the extensional databases (EDBs). The 

integrated schema is then established according to a set of first-order logic rules 

applicable to the EDBS, i.e., the integrated schema is a meaningful set of database (IDB) 

relations. [Ref.95]. 
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Johannesson [Ref.95] describes the importance of schema 

transformations in view integration. He addresses the problem ofmerging semantically 

equivalent but structurally different concepts. He also asserts that standardizing the 

Schemas to be integrated by applying schema transformations prior to integration yields 

better results. 

c.        Schema Mapping Generation 

Schema mapping generation is performed concurrently with bof the 

schema translation and integrated schema generation steps of a schema integration 

methodology. The creation of mappings during schema translation is necessary to pose 

intelligible queries to the local databases. [Ref.52]. This mapping may be stored as a 

dictionary at each local database. The mapping generated during the integrated schema 

generation process maps an object in the integrated schema to objects in the local 

Schemas being integrated. If the schema restructuring approach is applied, this mapping 

is generated concurrently with the integrated schema. The mapping is then stored in a 

global directory/dictionary. If the view generation technique is used, then the mapping 

is generally defined as part of the query statement used in creating the new view. 

[Ref.52]. 

3.        Automating Schema Integration 

The methodologies presented in the previous sections describe the general 

principles that can be used to achieve schema integration. It is clear that schema 

integration is a very complex and time-consuming process, and automation is desirable. 
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However, as stated before, the schema integration process cannot be completely 

automated— substantial interaction with designers and administrators is required during 

all the phases of the process. This is because schema integration tries to understand the 

semantics of component databases using knowledge representations that cannot 

completely capture the intended semantics of the data. 

Furthermore, two identical Schemas can be integrated differently according to 

their intended use. [Ref 97]. However, it is possible to automate schema integration to 

some extent so that tools take over ordinary, routine tasks, thus leaving most of the 

decision-making to designers and administrators, reducing the amount of user 

interaction. In this section, we present the integration tools that automate some portions 

of the schema integration process. 

a.        Schema Integration Toolkits 

One of the first automation efforts published was DeSouza's [Ref.98]. 

This work focuses on interschema relationship identification (IRI). The author presents 

an expert system designed to integrate conceptual Schemas defined using the Abstract 

Conceptual Schema (ACS). He defined a set of functions (called resemblance 

functions) that can be used to compare objects in the Schemas. These functions use both 

names and structure to estimate the resemblance between constructs. 

Every resemblance function has a weight that is used to indicate the relative level 

of importance that the user determines. [Ref.98]. For example, if having similar 

attributes is the most important criterion, the weight associated with that function would 

be high. Objects whose computed values of similarity fall above a certain threshold are 
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presented to the user as being possibly similar. The methodology is specific to ACS 

(Abstract Conceptual Schemas), so its usage is limited. Also, this paper does not deal 

with the integrated schema generation step. 

Sheth [Ref.99] presents a tool that leads users and designers through a 

five-step schema integration process: Schema Information Collection, Equivalence Class 

Creation and Deletion (Entities and Categories), Equivalence Class Creation and 

Deletion (Relationships), User Assertions (Entities and Categories), and User Assertions 

(Relationships). 

In the schema information collection step, the Schemas are input into the 

tool in the form of Entity-Category-Relationship Schemas. [Ref.99]. The user is asked to 

specify relations among attributes of entities and relationships that may be related. After 

these equivalences are specified, they are used to generate an ordered list of object 

(entity and relationship) pairs. The order demonstrates the likelihood that an object pair 

may need to be integrated. [Ref.99]. Users are then required to analyze this ordered list 

and specify one of five types of relationships between the objects. These relationships 

are equal, contained-in, contains, disjoint but integratable, and disjoint and 

nonintegratable. 

The toolkit presented in Sheth's paper is actually far from automation 

and requires a large amount of interaction with users and designers. Users can only 

make equivalence assertions among attributes, a condition that limits the amount of 

semantic information that can be encapsulated. [Ref.99]. 

Following the first introduction of toolkits comes the development of 

second-generation toolkits.   One of them is BERDI [Ref. 100], which provides for the 
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user's ability to define relationships among objects in a potentially related set of entities 

called entity clusters. [Ref. 100]. The system allows users to assert three types of 

relationships among attributes: equivalence, inclusion, and disjoint. The system then 

provides mechanisms for generating attribute hierarchies based on these relationship 

assertions among attribute pairs. However, the user still is responsible for identifying 

entity clusters that may be related. BERDI contains several tools, such as access to 

dictionary information and graphical query and display facilities, to assist users in this 

process. 

Another well prototyped toolkit is presented in Ramesh and Ram's paper 

[Ref. 82]. The authors utilize knowledge about entity classes, attributes, and 

relationships to assign similarity values among entity class, attribute, and relationship 

pairs, well as among related objects represented using different constructs. [Ref.82]. 

Their approach to identifying interschema relationships measures the similarity or 

dissimilarity between entity classes, attributes, and relationships in the component 

Schemas. They use two distinct measures: an index-of-similarity (IS) and an index-of- 

dissimilarity (ED) for this purpose. The IS can take on values between 0 and 1, and ID 

can take on values between 0 and -1. A high IS between objects indicates a high 

probability of a relationship between the objects. A high ID indicates that the objects in 

question may not be related. 

Heuristics are used to reduce the search space of comparisons. If it is 

clear that the resulting value will not reach a certain desirable level, the primary 

heuristics may terminate the computation. [Ref. 82]. Once the similarity values have 

been determined, an attempt is made to establish the type of relationship that could exist 
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among the various database objects. This is done partially using system heuristics and 

then confirmed by human integrators. 

A key characteristic of the methodology in Ramesh and Ram [Ref. 82] is 

that during schema integration, blackboard architecture is used to provide explicit 

support for the necessary human interaction. [Ref.82]. This is achieved by viewing 

human interaction as an additional knowledge source needed during schema integration. 

The system utilizes three types of knowledge sources: an interschema identification 

engine, an integrated schema generation engine, and the human integrators. 

The four-level blackboard architecture is shown in Figure 5.11. When 

we follow the levels from bottom to top, the information in the levels closest to the goal 

state-or the generation of an integrated schema. The knowledge engines employ input 

information available at a lower level to deliver output information to higher levels. 

[Ref.82]. 
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Goal Level Integrated schema 

Fact Level User-confirmed interschema relationship 

Assertion Level System-generated interschema relationship 

Data Level In dividual Schemas to be integrated 

Fig 5.11. Four-level Blackboard Architecture. 

The data level of the blackboard stores a representation of each schema 

(using the common data model) that needs to be integrated. Hence, the schema 

transformation step is required before completing the integration process. This 

information represents the raw data that is going to be utilized by an interschema 

relationship identification (IRI) engine. By analyzing the Schemas from the data level of 

the blackboard, the interschema identification engine generates temporary assertions 

about the similarity or dissimilarity between entity classes, attributes, and relationships 

in the Schemas to be integrated. [Ref.52]. These assertions are placed on the assertion 

level of the blackboard. 

The interschema identification engine consists of three distinct 

knowledge sources: entity class definition similarity, attribute similarity, and 

relationship similarity computation engines [Ref. 82]. Information made available on the 
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blackboard activates these different knowledge sources. [Ref.82]. The interschema 

relationship identification scheduler (IRS) is responsible for monitoring the blackboard 

and triggering the appropriate knowledge sources as necessary. The output of IRI 

engines may not be always accurate, and needs confirmation from the user, so they are 

called transient assertions. 

Humans use the information available at the assertion level of the 

blackboard during their role in the integration process. [Ref.82]. Their role is to 

transform the transient assertions generated by the interschema relationship 

identification process into facts by modifying or confirming them. These facts appear at 

the fact level of the blackboard. The human integrators interact with the blackboard 

through a graphical environment. This environment allows a group of designers to work 

simultaneously on modifying/confirming assertions placed on the blackboard. It also 

provides users with (computer) communication channels for resolving differing 

viewpoints among users during this process. Users can also use this environment to 

view other objects on the blackboard, such as individual Schemas, the (partially) 

integrated schema, facts, and other assertions. [Ref.82] 

The integrated schema generation process operates on the information 

available at the fact level. It consists of three components: the integrated schema 

generation scheduler (SGS), the preprocessor, and the integrator [Ref.82]. The SGS 

monitors the fact level of the blackboard and, when appropriate, activates the 

preprocessor and integrator components. The preprocessor inputs facts about similarity 

between entity classes (from the fact level) and attempts to generate possible 

equivalence relationships between them.   The results of the computation are output to 
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the assertion level of the blackboard for confirmation by the human integrators. "The 

integrator utilizes information from the various areas of the fact level of the blackboard 

to integrate the individual Schemas" [Ref.82]. Output from the integrator is placed on 

the goal level of the blackboard. 

C. IDENTIFYING SEMANTICALLY EQUIVALENT OR RELATED 

DATA ITEMS IN COMPONENT DATABASES. 

To reiterate from previous chapters, an essential prerequisite to achieving 

interoperability in multidatabase systems is the ability to identify semantically 

equivalent or related data items in component databases. Another challenging task in 

multidatabase systems is to enable users to handle information from different databases 

that refer to the same real-world entity. In this section, we discuss an application of 

expert systems, semantic networks, that help to detect and resolve semantic 

heterogeneities among component databases. We will also discuss a semantic query 

language, SemQL, designed to capture the concepts users want to express. [Ref. 101]. 

In this chapter, we have discussed the schematic integration techniques, but 

schema considerations alone are not enough to detect semantic heterogeneity; additional 

knowledge must be considered in order to gain semantic knowledge. As stated before, a 

completely automatic integration is impossible even with perfect expert systems due to 

the fact that such an expert system cannot represent the intentions of every database 

designers and administrators. However, it is possible to diminish the burden of humans 

by using some AI techniques and expert tools. 
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In this section, we present the usage of a linguistic knowledge in WordNet 

[Ref. 102] for integrating information. WordNet is an on-line lexical dictionary and is 

organized by semantic relations such as synonymy, antonymy, hyponymy, and 

metonymy [Ref. 103]. The noun portion of WordNet is designed around the concept of 

synset (synonym set) which is a set of closely related synonyms representing a word 

meaning. 

Using the synsets in Wordnet and the descriptions of database objects, a 

semantic network can be constructed that provides semantic relations among database 

objects [Ref. 101]. With this semantic network, semantic heterogeneities among 

component databases can be detected and resolved. On the other side, a semantic query 

language, such as SemQL (discuss in subsequent sections, can be used to capture the 

concepts about what users want. SemQL allows users to send queries to a large number 

of autonomous databases without any prior knowledge of their schemas. Figure 5.12 

shows the outline of this approach. 

1.        Semantic Networks 

A multidatabase system can provide a uniform interface to a multitude of 

component databases. Consider the knowledge a multidatabase system would need to 

answer the following query: 

"Find those ships whose length is over 100 meters." 
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To answer this question, the system must have several kinds of knowledge. It 

must know (a) where to find the relevant information on the component databases 

{access knowledge) and (b) which entities, attributes, or values in the component 

databases meet the semantics in the query {semantic knowledge). 

Component 
Databases 

Descriptions of 
database object 

Semantic 
Network 

A 
STOorom sets 

WordNet 

Figure 5.12. Semantic Network Integration Approach. 

To acquire this knowledge, semantic conflicts must be first be dealt with. 

Semantic networks, which specify the relations among entities, attributes, and value 

domains in component databases, can be used to deal with these conflicts [Ref. 101]. 

The basic idea is to use synonym sets from a lexical system such as WordNet to 

provide a mapping mechanism. Once a semantic network is constructed, semantic 
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heterogeneity based on it can be detected and resolved. In the following subsection, 

we again classify the semantic heterogeneity based on schema conflicts and data 

conflicts. 

a. Classification of Semantic Heterogeneity 

As previously explained, semantic heterogeneities include differences in 

the way the real world objects is modeled in the databases, particularly in the Schemas of 

the databases. Since a database is defined by its schema and data, semantic 

heterogeneities can be classified into schema conflicts and data conflicts. Schema 

conflicts mainly result from the use of different structures for the same information, and 

the use of different names for the same structures. Data conflicts are caused by 

inconsistent data in the absence of schema conflicts. [Ref. 104]. Figure 5.13 shows an 

example illustrating semantic heterogeneities. 

As the focus is only on the schema conflicts, we assume that data 

conflicts, such as different representation for the same data, are already conformed. 

Focusing on schema conflicts, we present the following below: entity versus entity 

structure conflicts, entity versus attribute structure conflicts, entity versus value structure 

conflicts, entity versus entity name conflicts, and attribute versus attribute name 

conflicts. 

(1) Entity versus entity structure conflicts: These conflicts 

occur when component databases (CDBs) use different numbers of entities to represent 

the same information.    For example, CDB1  uses two entities, SurfaceShip and 
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Submarine for general information on the ship, while CDB2 and CDB3 use only one 

entity, Ship. 

Component Database 1 fCDBl): 

SurfaceShip (hull*, name, length, displacement, country, city, CO# ) 

Submarine ( hull*, name, length, displacement, country, city, CO# ) 

SurfaceCO (CO*, name, rank, salary, age ) 

SubmarineCO ( CO*, name, rank, salary, age ) 

Component Database 2 (CDB2): 

Ship (hull*, nm, type, CO*) 

Port (country, city ) 

Captain ( CO*, nm, type, rank, salary, age) 

Component Database 3 (CDB3): 

Ship ( hull*, name, type, port, CO* ) 

Captain (CO*, name, type, salary, rank, age ) 

Component Database 4 (CDB4): 

Warship (hull*, nm, surface, submergible, CO* ) 

CO ( CO*, nm, rank ). 

Figure 5.13. Example Database Schemas. 
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(2) Entity versus attribute structure conflicts: This type of 

conflicts occurs if an attribute of some CDBs is represented as an entity in others. In the 

sample database Schemas, CDB3 uses an attribute, port, in the entity Ship to represent 

the ship's port, while CDB2 represents the same information in the entity Port. 

(3) Entity versus value structure conflicts: These conflicts 

occur when the attribute values in some CDBs are semantically related to the entities in 

other CDBs. For example, CDB1 uses two entities, SurfaceShip and Submarine, for 

surface and submergible ships, respectively, while the same information for type is 

represented as values of an attribute type in CDB3. 

(4) Attribute versus attribute structure conflicts: These 

conflicts occur when CDBs use different numbers of attributes to represent the same 

information. For example, CDB1 uses two attributes, country and city, for information 

on port, while CDB3 uses one attribute, port. 

(5) Attribute versus value structure conflicts: These 

conflicts occur when the attribute values in some CDBs are semantically related to the 

attributes in others. In the example database Schemas, CDB4 uses two attributes, 

surface and submergible, for information on type, while the same information is 

represented as values of an attribute type in CDB3. 
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(6) Entity versus entity name conflicts: These conflicts arise 

due to different names assigned to entities in different CDBs. For example, the entity 

for a war ship is called Ship in CDB3 and Warship in CDB4. 

(7) Attribute versus attribute name conflicts: Attribute name 

conflicts are similar to the entity name conflicts. An example of this conflict type occurs 

in the example database Schemas where the attribute for ships's name is called name in 

CDB3 and nm in CDB4. 

b. WordNet as an on-line Lexical Dictionary 

As the term "word" is used to refer to the physical utterance and the 

lexicalized concept used to express a form, the phrase "word form" is used for the 

former, and "word meaning" for the latter in order to reduce ambiguity. Hence, the 

starting point for lexical semantics can be declared to be the mapping between forms and 

meanings. [Ref. 103]. 

WordNet [Ref. 102] is the product of a research project at Princeton 

University that attempts to model the lexical knowledge of a native speaker of English. 

The system has the power of both an online thesaurus and an on-line dictionary, and 

much more. Information in WordNet is organized around logical groupings called 

synsets. Each synset consists of a list of synonymous word forms and semantic pointers 

that describe relationships between the current synset and other synsets. The semantic 

pointers can be of a number of different types including, Synonymy (X has the same 
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sense with Y), Antonymy (X has the opposite sense with Y) , Hyponymy (X is a kind of 

Y) and Metonymy (X is part of Y) [Ref. 102]. 

Mappings between forms and meanings are many-to-many (some forms 

have several different meanings, and some meanings can be expressed by several 

different forms). Synonymy can be viewed as complementary aspects of this mapping. 

Polysemy and synonymy are problems that arise in the course of gaining access to 

information in multidatabase systems. Two difficult problems of information integration 

are polysemy and synonymy. Polysemy is the ambiguity of an individual word or phrase 

that can be used in different contexts to express two or more different meanings. 

The case of "commanding officer (CO)" and "captain" is an example of 

synonymy, while the word form "captain"' has many different meanings, which is an 

example of polysemy. The following, Figure 5.14, shows several different meanings 

returned for "captain" in WordNet following a querying of the on-line site of WordNet 

about the definition of the word, "captain". 

c Constructing Semantic Networks 

During the construction of a semantic network, as semantically similar 

entities and attributes might be abbreviated differently in different databases, the names 

of entities and attributes are generally not used. Instead, the words in an online lexicon 

(e.g. WordNet) that describe the concepts of the entities and attributes are used. A 

semantic network provides mappings between words in the lexicon and words provided 

by the local DBAs using synsets in Lexicon [Ref. 101]. After we describe the 

construction steps we will show an example (Figure 5.15): 
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The overall process of constructing a semantic network is as follows. 

STEP 1: At each CDB, the local DBAs must make descriptions of entities and 

attributes. As we said before, it is not possible for any system to capture semantics 

without human interaction, so creating a semantic network requires some initial input 

from the CDB administrators. For the sake of simplicity, most of the approaches allow 

the local DBAs to use only single nouns, compound nouns, or noun phrases in making 

the aforementioned descriptions [Ref. 101]. 

WordNet 1.6 overview for "captain" 

The noun "captain" has 7 senses in "WordNet. 

1. captain — (an officer holding a rank below a major but above a lieutenant) 
2. captain, skipper, commanding officer — (the naval officer in command of a 
military ship) 
3. captain, police captain, police chief— (a policeman in charge of a precinct) 
4. master, captain, sea captain, skipper - (an officer who is licensed to command a 
merchant ship) 
5. captain, chieftain - (the leader of a group of people; "a captain of industry") 
6. captain, senior pilot - (the pilot ins charge of an airship) 
7. captain, head waiter, maitre dhotel - (a dintngroom attendant who is in charge 
of the waiters and the seating of customers) 

Search for of senses 

Show glosses 

Show contextual help 

Figure 5.14. Different Senses of "Captain" in the Wordnet Online Dictionary. 
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STEP 2: The descriptions produced in STEP 1 are decomposed into unit nouns, (i.e., 

single nouns, compound nouns, or noun phrases which must be found in the lexicon . 

For example the compound noun, "commanding officer" can be found in WordNet, and 

is treated as a unit noun in constructing a semantic network. 

STEP 3: After making a description table, the component database administrators must 

deal with synonymy and polysemy. Also, the noun portion of the lexicon must be 

designed in synonym sets (synsets), which are sets of closely related synonyms 

representing word meanings. To identify unit nouns related by synonymy 

automatically, the synsets in the lexicon are used [Ref. 101]. However, to obtain the 

correct meaning of a unit noun, its polysemy must be manipulated by administrators. 

For example, when a local administrator inputs a unit noun "captain" into the lexicon, he 

must choose only one among many meanings. Actually, this procedure is a tedious task 

for the local DBAs, but the remaining steps in the creation and are automatic. 

STEP 4: Given the sets of unit nouns in the two component databases (CDBs), say 

UcDBi and UCDBj, each unit noun in UCDBi is compared with the unit nouns in UCDBJ, 

respectively, using synsets in the lexicon. 

Now, to understand the steps mentioned above, we give an example from 

the Navy domain and construct a partial semantic network step-by-step by using the 

online lexicon WordNet.  Our component databases will be used to show the semantic 
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heterogeneities (Figure 5.13).   For simplicity we will use only first two databases 

(CDB1 and CDB2) which are given in Figure 5.15. 

Component Databasel (CDBl): 

SurfaceShip ( hull#, name, length, displacement, country, city, CO# ) 

Submarine ( hull#, name, length, displacement, country, city, CO# ) 

SurfaceCO ( CO#, name, rank, salary, age ) 

SubmarineCO ( CO#, name, rank, salary, age ) 

Component Database 2 (CDB2): 

Ship (hull#, nm, type, CO#) 

Port ( country, city ) 

Captain ( CO#, nm, type, rank, salary, age) 

Figure 5.15. Schemas of CDB1 and CDB2. 

In our sample databases, although many entity and attribute names are 

straightforward, there are also some entity and attribute names that may not make sense 

to a civilian, for example "CO", "Hull#", and SubmarineCO. In Step 1, DBAs must 

describe these names. The following table (Table 6.5) shows the list of all entity and 

attribute names in their described form. 
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Entity/Attribute Name Description Respective number 

In Figure 5.16 
SurfaceShip Surface ship - 
Submarine Submarine - 
SurfaceCO Surface ship 

commanding officer 
" 

SubmarineCO Submarine commanding 
officer 

- 

hull# Hull number 1 
Name Name 2,9 
Length Length 3 
Displacement Displacement 4 
Country Country 5 
City City 6 
CO# Commanding officer 

number 
7,8 

Rank Rank 10,22 
Salary Salary 11,23 
Age Age 12,24 
Ship Ship - 
Port Port - 
Captain Captain - 
Nm Name 20 
Type Type 21 

Table 6.5. Description List. 

After the entity and attributes names are described by the administrators, 

in Step 2, these descriptions are decomposed into unit nouns. (Recall that a unit noun is 

a single noun, a compound noun or a noun phrase existing in the lexicon.) This process 

can be done automatically, and this thesis proposes an algorithm developed for that 

algorithm purpose. The following simple pseudo-code describes the basic form of our 

algorithm. We assume that a description can have at most three single nouns. We 

extend this number easily by adding some extra lines: 
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DSet is a set of name descriptions in a database. 

D is a description and D e DSet. 

D = [ wi.wj....wt ] where i < k and 1 < t < x,   i, t, x e Z 

For 3 D eDset{ 

// if the whole phrase exists in the lexicon 

if D = [wi] and [wi] is in Lexicon 

UnitName U = D; // unit name will be whole phrase 

II We decompose the description into two nouns 

Else if D = [wi.wj] AND wi and wj are in Lexicon 

UnitName U1= [wi] and U2 = _ ._ 
// We decompose the description into three nouns 

Else if D = [wi.wj.wk] AND [wi.wj] and [wk] are in Lexicon 

UnitName U1= [wi.wj] and U2 = [wk] 
Else if D = [wi.wj.wk] AND [wi] and [wj.wkj are in Lexicon 

UnitName U1= [wi] and U2 = [wj.wk] 
Else if D = [wi.wj.wk] AND [wi], [wj], and [wk] are in Lexicon 

UnitName U1 = [wi], U2 = [wj], and U3 = [wk] 

} 

Table 6.6 gives the results of this process. 
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Description Unit Names ( exist in Wordnet) 

Surface ship [surface ship] 
Submarine [submarine] 
Surface ship commanding 
officer 

[surface ship] 
[commanding officer] 

Submarine commanding 
officer 

[submarine] 
[commanding officer] 

Hull number [hull] 
[number] 

Name [name] 
Length [length] 
Displacement [displacement] 
Country [country] 
City [city] 
Commanding officer 
number 

[commanding officer] 
[number] 

Rank [rank] 
Salary [salary] 
Age [age] 
Ship [ship] 
Port [port] 
Captain [captain] 
Name [name] 
Type [type] 

Table 6.6. Descriptions in Unit Noun Forms. 

After the unit names list is obtained, the administrator should indicate the 

intended senses of unit names to cope with polysemy in Step 3. For example, "captain" 

must be selected from WordNet with the definition, "the naval officer in command of a 

military ship." Given the sets of unit nouns in the two component databases (CDBs), 

UCDB1 and UCDB2, each unit noun in UCDB1 is compared with the unit nouns in 

UCDB2, respectively, using synsets in the lexicon. Hence, the same unit names are used 

only once in the network. For example, we obtained three "commanding officers," and 
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we would not need to use three of them, just one would be enough in the semantic 

network. 

Also another property of WordNet helps us to find the hypernym 

relationships (X is a kind of Y) between unit names. With this property the lubs (lowest 

upper bound) of unit names can be found. We believe that lubs can be used for many 

goals, some of which are explained in the following sections. 

We can now establish our semantic network shown in Figure 5.16. We 

also add the lubs into our network. 

2.        Semantic Query Processing 

When we look at the process of database design from the semantic perspective, 

the scope spans from real world objects to data representation. As mentioned earlier, 

every designer develops his own conceptualization of the "real world" according to his 

habits and intentions, turning this conceptualization into a database design. As a result, 

different, generally incompatible Schemas for the same information are developed. 

Therefore, users are faced with the problem of locating and integrating relevant 

information when they need to combine information from several databases. 

The simplest solution to this problem is simply allowing the user to access the 

relevant databases. But how can the user know all the relevant databases? Assume he 

or she knows the locations, but how can he or she knows all of the Schemas of the 

relevant databases. Therefore, this solution requires the user to learn all the schemas-- 

an unacceptable burden to the users. 
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Figure 5.16. Semantic Network. 
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A more efficient and effective approach is to allow users to issue queries 

to a large number of autonomous databases with his/her own terms. It frees users from 

learning independent Schemas. A semantic query language such as SemQL can be used 

to issue queries not with Schemas, but rather with concepts known by the users. 

a.        Semantic Query Languages 

In a relational database, semantic query languages are generally similar to 

SQL except that they have no FROM clause, and are basically formed of the two clauses 

SELECT and WHERE, and have the following form [Ref.101], 

SELECT <concept list> 

WHERE <condition> 

Here <concept list> is a list of concepts whose values are to be retrieved 

by the query [Ref.101]. The <condition> is a conditional search expression that 

identifies the tuples to be retrieved by the query like in classic SQL. 

<concept list> consists of concept expressions. A concept expression is a 

concatenation of entity and attributes names similar to SQL. However, these names are 

not real data object names, rather they are concept names. A basic concept expression is 

in the following form: 

<concept expression> = <entity concept name>.<attribute concept name>. 
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The <condition> clause is similar to SQL's condition clauses, but again, 

instead of real object names, concept expressions are used. For example, when a user 

wants to learn the skipper of the USS Alabama, he will issue the following query: 

SELECT skipper.name 

WHERE submarine.skippername = skipper.name AND submarine.narne = "TCG 

Doganay". 

b.        Semantic Query Processing Procedure 

Although, there are some differences among the query processing 

capabilities of different languages, here we discuss only the SemQL to give a general 

idea of query processing. 

The SemQL processor consists of Query Parser, Resource Finder, 

Mapping Generator, Query Distributor, and Integrator. The overall functionality of 

SemQL is completed in the following steps [Ref.101]. 

STEP 1: The users issue a semantic query (consisting of concept 

expressions mentioned above) with his/her own concepts to retrieve equivalent or 

related data items. 

STEP 2: The Query Parser parses the query and extracts entity, attribute 

and value concepts from the query. 

STEP 3: The Resource Finder identifies the relevant component 

databases in which the concepts exist by looking at the semantic network. 
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STEP 4: The Mapping Generator generates the necessary mappings 

between the original concepts in the query and representations in component databases. 

STEP 5: The Subquery Generator reformulates the original query into 

multiple subqueries acceptable to the CDBs. The terms in the subqueries are those 

generated by the Mapping Generator. In this step, looking up the semantic network, 

Subquery Generator adds FROM clauses to the subquery. 

STEP 6: The Query Distributor submits the sub-queries to the 

component databases. 

STEP 7: The component databases receive the subqueries and execute 

them. After the execution, the results are returned to SemQL processor. 

STEP 8: The integrator merges the intermediate results from the 

component databases and presents the integrated results to the users. 

To better explain these steps, we provide an example from the previous 

databases (CDB1 and CDB2). For example, a user issues a query to learn the names of 

skippers who are under the age of 35. We assume that the user has no idea about the 

Schemas of the databases and knows only the basic concepts. Such a query would be in 

following form in natural language. 

QUERY: Find those skippers whose age is under 35. 

The user issues the SemQL correspondence of this query as follows to the 

SemQL Processor (STEP 1): 
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SELECT skipper.name 

WHERE skipper.age < 35. 

The Query Parser parses the query and extracts concepts from the query 

(STEP 2). These extracted concepts are { skipper, name, age }. In Lee and Baik's 

approach [Ref. 101], these concepts are compared with the unit nouns in the semantic 

network (on the left side of Figure 5.16). If one of these concepts can not be matched 

with a unit noun, the query fails and gives no result. We suggest that, the system also 

produces the hypernyms (X is a kind of Y) of the concepts. 

As remembered, we already added the lubs of unit nouns into the 

semantic network. According to our approach, first the Resource Finder component of 

SemQL detects the component databases by looking up the semantic network and 

comparing the unit names and concept names. After that, it compares the lubs of unit 

names with the hypernyms of the concepts (STEP 3). 

In our example, even though "name" and "age" exist in semantic network 

as a unit name, "skipper" does not exist. The first order hypernym "skipper" in 

WordNet is "officer". By following the chain downward starting from the word, 

"officer", we see that "skipper," "commanding officer," and "captain" are in the same 

synset (synonym set). So the resource finder detects CDB1 and CDB2 as relevant 

databases. 
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In Step 4, the Mapping Generator identifies the mappings between 

concepts in the original query and representation in CDB1 and CDB2. Figure 5.17 

shows the result of the mapping procedure. 

CDB1 Concepts in the query CDB2 

Figure 5.17. Mapping Procedure 

Upon completion of the mapping procedure, the Subquery Generator 

generates subqueries (STEP 5) for CDB1: 

SELECT name 

FROM SurfaceCO 

WHERE age < 35 

UNION 

SELECT name 

FROM SubmarineCO 
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WHERE age < 35 

And for CDB2; 

SELECT nm 

FROM Captain 

WHERE age < 35. 

And then the Query Distributor submits the two subqueries to CDB1 and 

CDB2 respectively (STEP 6). 

The two component databases, CDB1 and CDB2, return the result tuples 

of the subqueries to the SemQL Processor (STEP 7). 

The Integrator merges the results and presents the integrated results to the 

user (STEP 8). 

D.        SUMMARY 

In this chapter, we discuss the general information integration techniques. In 

Section A, we present the remote-exchange approach that represents the general 

mechanism for resolving representational heterogeneity in the context of a multidatabase 

system. For these kinds of mechanisms to operate effectively, each participating 

component must agree to meet two principal conditions: First, a common data model 

must be supported at the federation interface, including a set of sharing functionalities 
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(like RSL in remote-exchange). Second, a structure-like local lexicon must be provided, 

wherein a component describes the meaning of the (type) objects it is willing to share 

with other components in federation. These objects must be described using the 

conceptual relationship descriptors. 

In order to facilitate the establishment of a multidatabase system, we showed the 

importance of ontologies, which contain an initial set of terms that can be used to 

describe unknown concepts in the local lexicon of each component. A complete 

ontology package describes the general and specific information from the application 

domain and will evolve and grow by time to accommodate additional, more complex 

concepts within a given federation. Such packages can be provided for specific domains 

such as military environment or medical society. 

In Section B, we emphasized the importance of schema integration for providing 

interoperability among heterogeneous databases. We describe the key problems and 

four-step process for schema integration. We also presented a framework for 

developing automated schema integration tools using blackboard architecture. 

Finally, in Section C, we have discuss the semantic networks for data integration. 

Particularly, we used WordNet, an electronic online dictionary, as a background 

knowledge source to establish a semantic network. We show that semantic networks 

can be created from the word meanings from synonym sets in WordNet and descriptions 

of database objects. With the semantic relations presented in semantic networks, 

semantic heterogeneities among component databases can be detected and resolved. 

Also, we introduce a semantic query language, SemQL, to capture the concepts about 
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what users want.  SemQL allows users to issue queries with the user's own concepts, 

which frees them from learning various component database Schemas. 
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VI.      SUMMARY, CONCLUSIONS AND FUTURE WORK 

A.        SUMMARY 

Information needed by users may be supplied by two or more sources, each of 

which resides at a different physical location in a distributed system. Typically, 

information sources are designed from scratch, and are independent of each other. This 

has led to proliferation of information sources created according to different sets of 

requirements for modeling identical or similar real-world objects. As the amount of 

information on different platforms increases, the critical need to combine these data 

sources grows. The challenge is to give the user the sense that he or she can access a 

single information source that contains everything they need, that is, make the multi- 

source distributed nature of the system transparent to the user. However, any successful 

solution to the integration of preexisting information sources must address issues related 

to autonomy and heterogeneity. 

To address these issues, different approaches have been proposed. Early research 

ignored the autonomy issue and the emphasis was put on finding solutions to 

heterogeneity; these are known as global schema integration approaches. All of the 

Schemas from component information sources are integrated statically while the system is 

being built. The advantage of such an approach is that user has a fully consistent, 

uniform view of, and access to, data. However autonomy is completely sacrificed for the 

sake of the solution of the heterogeneity. 
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Also, creating a global schema is not a simple task and requires human 

interaction. Even if one assumes that the integration process was performed 

automatically by expert systems, since the global schema is the center of the system, the 

verification of the correctness of the schema is manually intensive task. As a result, the 

global schema approach is suitable only for small systems in which the number of 

information sources is very small, changes in component Schemas are very rare, and the 

system is closed to new information sources. 

The multidatabase language approach evolved as way to get around some of the 

drawbacks of a global schema integration approach. This approach is intended for users 

of a multidatabase system who do not use a predefined global schema. The goal of 

having a multidatabase language is to create constructs that perform queries involving 

several information sources at the same time. The main drawbacks of this approach are 

the lack of distribution and location transparency for users. Users not only have to find 

the right information in a potentially large network of information sources, but they are 

also responsible for understanding the Schemas, detecting and resolving semantic 

conflicts, and performing view integration. Therefore, this approach is suitable for small 

simple systems. 

In contrast, the Federated Database Systems (FDBS) approach removes the need 

for static global schema integration. The integration is performed dynamically when 

needed, and the amount of information delivered depends upon the needs of the users. 

Because there is no need for static and complete schema integration, the number of 

component information sources can be high, and theoretically can include all information 
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sources.    The mediator-wrapper architecture adopted by most research groups is an 

example of subscribing to a FDBS approach. 

Although FDBS approach appears to be the most convenient information 

integration approach, it is flawed when it comes to identifying objects in different, largely 

distributed information sources that are semantically related, and then resolving the 

schematic differences among semantically related objects. It is apparent that this is not a 

task a human can do. Therefore, at least some parts of integration process must be 

automated. 

In this thesis, the focus is on the semantic heterogeneity issue in the integration 

process. In Chapter IV, different approaches are presented to represent the semantic 

relationship between real-world objects in different information sources. We have 

emphasized that the real-word semantics of data objects can not be captured using 

mathematical formalism. We need to represent more of the mostly human-based 

knowledge in order to capture the semantics of the relationships between objects. 

Database administrators must provide this knowledge when integration process begins. 

We try to lessen this burden for humans as much as possible by employing some 

knowledge sources. 

Particularly, we have adopted the semantic network approach and WordNet as the 

knowledge source to identify the relevant information sources and resolve semantic 

conflicts. In similar semantic network approaches, researchers propose to use synonym 

sets in a lexicon to identify the semantically related objects. If the object names in 

different information source are in the same synonym set, then these objects are identified 

as related objects (equivalent or identical). In addition to this strategy, we have suggested 
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that the hypernym (X is a kind of Y) relationships between object names can also be used 

to identify other semantic relationships. 

B.        CONCLUSIONS 

As a result of our study, we conclude that, a fully automated integration between 

independent information sources is difficult to accomplish due to the fact that every 

information source is created by individuals with their own conventions, needs, and 

intentions. Expert systems that serve as a knowledge base to resolve semantic differences 

can only help expedite the integration process. Otherwise, there is no such knowledge 

base capable of capturing the knowledge of all people who design and administer 

independent data sources. 

When a natural language is concerned, humans tend to make incorrect matches 

between the meanings and utterances of words. This is significant as a perfect expert 

system can only reflect the abilities and knowledge of people who use natural languages. 

We cannot rule out the information sources designed and administered by people who err 

in the use of their own language. Therefore, future work in this area should concentrate 

on increasing the speed of integration by employing more knowledge and tools. 

FUTURE WORK 

In this thesis, we discuss only the integration of structured data sources, such as 

databases and record-based files, and the heterogeneity of information sources. Although 

we   discuss   the  mediator-wrapper  architecture  to  cope  with  semistructured   and 
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unstructured data, the deployment of mediators and wrappers in various application 

domains was not mentioned, and may be a good future thesis topic. Like other 

researchers, we have overlooked the issues of autonomy and security, which have not 

been thoroughly addressed in the literature. Concerns about security and autonomy 

issues in multidatabases should be addressed in future works. We show the usage of 

semantic networks in the semantic resolution process, but this usage is only based on 

theory, and we did not test our approach to assess its effectiveness. The implementation 

of a semantic network to see how many information sources can be handled may also be 

a worthwhile thesis topic. 
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APPENDIX A: BACKGROUND OF EXPERT SYSTEMS 

A.       EXPERT SYSTEMS 

1.        The Nature of Expertise 

An expert system is a computer program that employs knowledge of a specialist 

subject with the objectives of solving problems and making recommendations. The 

following conditions are necessary to call a computer program an expert: 

First, the computer program should possess knowledge. For example, it is not 

sufficient for a program to rely solely on checklists or a list of algorithms. Secondly, this 

must be focused upon a specific domain. Miscellaneous collections of names, dates, 

places, and historical facts would not be considered a basis for expertise knowledge. 

Knowledge implies organization and integration in that different pieces of knowledge 

should interrelate in a logical and purposeful union. Finally, this knowledge must be 

capable of solving problems directly, implying an ability to accomplish tasks on demand. 

Merely demonstrating knowledge relevant to technical support should not be considered 

the equivalent to solving problems. 

An expert system may completely fulfill a function that normally requires human 

expertise, or may assist a human decision maker. In other words, the client may interact 

with the program directly, or interact with a human expert who interacts with the 

program. In the latter case, an expert system may justify its existence by improving the 

productivity and increasing the quality of the decision maker's output. For example, the 

human collaborator may be someone who is capable of attaining expert levels of 

197 



performance given some technical assistance from the program, tantamount to achieving 

successful expert systems deployment. 

Expert systems technology derives from the research discipline of Artificial 

Intelligence (AI) concerned with the design and implementation of programs that are 

capable of emulating human cognitive skills such as problem solving, visual perception, 

and language understanding. This technology has been successfully applied to a wide 

range of fields, including organic chemistry, mineral exploration, and internal medicine. 

Typical tasks for expert systems involve the following [Ref. 105]: 

Interpretation of data, such as sonar signals; 

Diagnosis of malfunctions, such as equipment faults or human diseases; 

Structural analysis of complex objects, such as chemical compounds; 

Configuration of complex objects, such as computer systems; and 

Planning sequences of actions, such as might be performed by robots. 

Although more conventional programs have been known to perform similar tasks 

in similar domains, we shall argue in the next section that expert systems are sufficiently 

different from such conventional programs so as to form a distinct class. There is no 

precise definition of an expert system that is guaranteed to satisfy everyone. However, 

certain features of critical importance should be possessed, to some degree, by any 

system classified as "expert." 
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2.        The Characteristics of an Expert System 

An expert system can be distinguished from more conventional applications 

programs in that: 

• It simulates human reasoning about a problem domain, rather than 

merely manipulating information about the domain itself. This 

characteristic distinguishes expert systems from more familiar programs 

that involve mathematical modeling or computer animation. This is not to 

say that the program is equally capable as the human expert; rather, the 

ideal is to emulate an expert's problem solving abilities, enabling an expert 

system to perform relevant tasks as well as, or better than, the expert. 

• It applies reasoning over representations of human knowledge, in 

addition to doing numerical calculations or data retrieval [Ref. 105]. 

The knowledge in the program is normally expressed in some special- 

purpose language and kept separate from the code that performs the 

reasoning. These distinct program modules are referred to as the 

knowledge base and the inference engine, respectively. 

• It solves problems by heuristics or approximate methods that, unlike 

algorithmic solutions, are not guaranteed to succeed [Ref. 105]. A 

heuristic is essentially "a rule of thumb that encodes a piece of knowledge 

about how to solve problems in some domain" [Ref. 105]. Such methods 

are approximate in the sense that (1) they do not require perfect data and, 
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(2) the solutions derived by the system may be proposed with varying 

degrees of certainty. [Ref. 105] 

An expert system also differs from other kinds of artificial intelligence programs 

in that: 

• It deals with subject matter of realistic complexity that normally 

requires a considerable amount of human expertise [Ref. 105]. Many 

AI programs are really research vehicles, and may therefore focus upon 

abstract mathematical problems or simplified versions of real problems in 

order to gain insights or refine techniques. Expert systems, on the other 

hand, solve problems that are of genuine scientific or commercial interest. 

• It must exhibit high performance in terms of speed and reliability in 

order to be a useful tool [Ref. 105]. AI research vehicles may not run 

very fast, and may likely contain bugs. They are programs, not supported 

software. But an expert system must propose solutions in a reasonable 

time and be right most of the time, (that is, at least as often as a human 

expert.) 

• It must be capable of explaining and justifying solutions or 

recommendations in order to convince the user that its reasoning is in 

fact, correct [Ref. 105]. Research programs are typically only run by their 

creators, or by other personnel in similar laboratories. An expert system 

will be run by a wider range of users, and should therefore be designed to 

ensure ease of operation for a wide variety of users. 

200 



The term knowledge-based system is sometimes used as a synonym for "expert 

system," although the former is more general. A knowledge-based system is any system 

that, instead of relying mostly on algorithmic or statistical methods, performs a task by 

applying an established set of rules to a symbolic representation of knowledge. Thus, a 

program capable of conversing about the weather would be a knowledge-based system, 

even if that program did not have any expertise in meteorology. But, an expert system in 

the domain of meteorology should also be able to provide us with weather forecasts. 

In summary, expert systems encode the field specific knowledge of everyday 

practitioners in a particular field, which is then used to solve problems, instead of using 

universal problem solving techniques generated by computer science or mathematics. 

The process of constructing an expert system is often called knowledge engineering, and 

is considered to be applied artificial intelligence. 

3. Fundamental topics in expert systems 

It is not surprising that, given that expert systems research has grown out of more 

general concerns in artificial intelligence, this type of research maintains strong 

intellectual links with related topics in its parent discipline. Some of these links are 

outlined in the following sections. 

Knowledge acquisition, or the transfer and transformation of problem-solving 

expertise from one knowledge source to a program, is usually a result of a series of 

complex interviews between a knowledge engineer, who is normally a computer 

specialist, and a domain expert. It is estimated that this knowledge acquisition produces 

between two and five units of knowledge per day, a rather low output that has led 
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researchers to regard knowledge acquisition as "the bottleneck problem" of expert 

systems applications [Ref. 107]. 

There are a number of reasons why productivity is typically low. Specialist fields 

have their own lexicon, making it difficult for experts to communicate their knowledge 

in everyday language. Secondly, the facts and principles underlying many domains of 

interest cannot be adequately represented in terms of a mathematical theory or model 

whose properties are clearly defined. Statistical models may enable us to make rather 

general, long-term predictions, but generally do not provide short-term solutions. 

Additionally, experts need to know more than the mere facts or principles of a 

domain in order to solve problems. For example, they usually know which information is 

relevant to which kinds of judgment, how reliable different information sources are, and 

how to make hard problems easier by breaking them down into more simple problems 

which can usually be solved independently. Such knowledge, which is normally based 

on personal experience rather than formal training, is much more difficult to acquire than 

basic facts or principles. Human expertise, even in a relatively narrowly defined field, is 

often set in a broader context that includes common sense and everyday knowledge. 

Dissatisfaction with the interview method has led some researchers to try to 

automate the process of knowledge acquisition. One area of research concerns 

automated knowledge elicitation, in which there is a transfer of expert knowledge to a 

computer program. Other researchers have looked to the sub-field of AI known as 

machine learning for a solution to the bottleneck problem. The idea is that a computing 

system could perhaps learn to solve problems in much the same way that humans do. 

(Knowledge acquisition is described in greater detail in Section D.) 
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Knowledge representation (Section B) is itself a substantial sub-field, and is 

concerned with the ways in which information is stored and associated in the human 

brain, usually from a logical, rather than a biological, perspective. In other words, 

knowledge representation is not typically concerned with the physical details of how 

knowledge is encoded, but rather with what the overall conceptual scheme might look 

like [Ref.105]. 

In the 1970s, knowledge representation research attempted to address such 

questions as how human memory works, proposing theories of reminding, recognition, 

and recall. Some of the resultant theories led to computer programs which tried to 

simulate different ways in which concepts might be associated, so that a computer 

application would be able to, when attempting to solve a problem, find the right piece of 

knowledge at the right time. 

In the world of expert systems, knowledge representation is mostly concerned 

with finding ways in which large bodies of useful information can be transcribed for the 

purpose of symbolic computation (See Section C for further explanation). Formally 

described means the material is written in unambiguous language or notation with well- 

defined syntactic and semantic systems revealing the meaning of expressions. Symbolic 

computation is the representation of non-numeric computations using symbols and 

symbol structures that define concepts and the relationships between them. 

AI researchers have made a good deal of effort in constructing representation 

languages, that is, computer languages that are oriented towards organizing descriptions 

of objects and ideas, rather than stating sequences of instructions or storing simple data 

elements.   The main criteria for assessing a representation of knowledge are logical 
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adequacy,   heuristic   power,   and   notational   convenience,   terms   deserving   some 

explanation. 

Logical adequacy means that the representation should be capable of making all 

the distinctions that we want to make [Ref. 105]. For example, it is not possible to 

represent the idea that every drug has some undesirable side effect unless we are able to 

distinguish between the designation of a particular drug and a particular side effect and 

the more general statement to the effect that: 'for any drug, there is an undesirable side 

effect associated with it.' 

Heuristic power means that as well as having an expressive representation 

language, "there must be some way of using representations so constructed and 

interpreted to solve problems" [Ref. 105]. It is often the case that the more expressive the 

language, in terms of the number of semantic distinctions that it can make, the more 

difficult it is to control the drawing of inferences during problem solving. Many of the 

formalisms that have found favor with practitioners may seem quite restricted in terms of 

their powers of expression when compared with English or even standard logic. Yet they 

frequently gain in heuristic power as a consequence; that is, it is relatively easy to bring 

the right knowledge to bear at the right time. Knowing which areas of knowledge are 

most relevant to which problems is one of the things that distinguishes the expert from 

the amateur or the merely well-read. [Ref. 105] 

Notational convenience is a virtue because most expert systems applications 

require the encoding of substantial amounts of knowledge, and this task will not be an 

enviable one if the conventions of the representation language are too complicated 

[Ref. 105]. The resulting expressions should be relatively easy to write and to read, and it 
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should be possible to understand their meaning without knowing how the computer will 

actually interpret them. "The term declarative is often used to describe code which is 

essentially descriptive and can therefore be understood without knowing what states a 

real or virtual machine will go through at execution time" [Ref. 105]. 

Several conventions for coding knowledge have been suggested, including 

production rules [Ref. 108], structured objects [Ref. 109], and logic programs [Ref. 110]. 

Most expert systems use one or more of these formalisms, and their pros and cons are 

still a source of controversy among theoreticians. 

Expert systems design requires close attention to the details of how knowledge is 

accessed and applied during the search for a solution. Knowing what one knows, and 

knowing when and how to use it, is metaknowledge, or knowledge about knowledge, and 

is implied by the concept of "expertise 

Different strategies for bringing domain-specific knowledge to bear will have 

profound effects upon a program's performance characteristics. These strategies will 

determine the manner in which a program searches for a solution. The data given to a 

knowledge-based program will generally not be sufficient for the program to know 

exactly where it should look for answers. 
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B.        KNOWLEDGE REPRESENTATION 

1.        Early Studies 

Most knowledge representation formalisms can be employed under a variety of 

control regimes, and expert systems researchers have in the past and are continuing to 

experiment in this area. During the mid-1960s to the mid-1970s, computer programmers 

were very concerned with making machines understand natural language, especially 

stories and dialogue. 

Winograd's (1972) SHRDLU system was arguably the climax of this epoch. His 

development was a program that was capable of understanding an impressive subset of 

English, accomplished by representing and reasoning a very restricted domain (a world 

consisting of children's toy blocks). The program exhibited an understanding of natural 

language by modifying its representations of the fictitious world in response to 

commands, and by responding to questions about both the configuration of and actions 

performed on the blocks. Thus it could answer questions like, "What is the color of the 

block supporting the red pyramid?" and derive plans for obeying commands such as, 

"Place the blue pyramid on the green block." 

SHRDLU was said to understand sentences because it responded appropriately. 

The rationale for this view of understanding is called procedural semantics. The principle 

underlying the concept of procedural semantics is simply that if a program can respond to 

or answer a question appropriately, then the program is said to have "understood." 

Similarly, if a program can correctly carry out a command, then it has "understood" the 

language used in the process of issuing and responding to a command. 
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Another line of research attempted to achieve language comprehension in less 

artificial and more everyday contexts, such as visits to a doctor, or dining in a restaurant. 

A structure called script was used to represent the various elements that make up a real- 

world situation. Scripts can be thought of as formulas for the objectives, tasks, and 

customs that are associated with particular events. Thus, "a 'restaurant script' would be 

activated by an 'eating' goal, be satisfied by a 'meal' solution, and would assemble 

intermediate knowledge about seating, menus, checks, tips, and the like" [Ref. 112]. 

Other researchers attempted to model human problem-solving behaviors on 

simple tasks, such as puzzles and word games. The goal was to make the knowledge and 

strategies used by the program resemble the knowledge and strategy of the human subject 

as closely as possible. The fundamental problem with such attempts is that there is no 

way to demonstrate that humans and AI programs are accomplishing the same tasks in 

the same ways. Thus, indirect arguments must be used to show that, for example, the 

program and human subject need the same amount of time to solve problems, or make the 

same types of error when presented with faulty data. Simply showing that the programs 

get the same answer is obviously not enough, because there are a multitude of different 

strategies and encodings of knowledge that will solve the same problem. 

2. Knowledge representation schemes 

The new emphasis on knowledge representation generated a scheme known as 

production rules which proved to be an extremely productive asset for computer science 

(see Section E). This scheme has since become a mainstay of expert systems design and 
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development, and can be seen as a direct precursor of some of the knowledge elicitation 

techniques that engineers use today. 

Researchers have explored numerous possibilities for encoding both particular 

facts and general principles about the world in such a way that they could be applied by a 

computer program using goal directed reasoning. These possibilities involved using 

constructs such as: 

• If-then rules, i.e., "if these conditions hold, then apply this operator"; 

• Various kinds of networks, where nodes stand for concepts and arcs for 

relationships between them; and 

• Logical formulas for encoding facts and principles, including control 

information about when to draw what inferences. 

Sometimes these constructs are used in combination. However, most of the 

programs produced at this time are essentially research vehicles, and few of them found 

their way into real applications. 

The concept of "computer understanding" is entirely problematic, largely because 

the conditions under one is prepared to conclude that a machine understood anything are 

not clear. However, even if one is unsure about what would constitute adequate grounds 

for computer understanding, the following conditions would be essential. 

One such condition is the ability to represent knowledge about the world, and 

reason using representations. Expert systems exhibit this ability in one sense, as they can 

(a) possess representations of knowledge about specialist fields, and (b) they can apply 

this knowledge in order to solve real problems. 
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Another sign of understanding is the ability to perceive equivalences or analogies 

between different representations of the same situations [Ref. 105]. Expert systems 

perform badly here, since they expect their inputs to be in a certain form, namely one that 

corresponds to their stored knowledge. A deviation from a computer's expected patterns 

tends to result in breakdown or unpredictable behavior. 

Finally, understanding implies an ability to learn in a dynamic process in which 

new information is linked to existing information in a logical and potentially productive 

system. Few expert systems have demonstrated this kind of facility, although some 

progress towards machine learning has been made in recent years. Also, progress has 

been made in the design of programs which elicit knowledge from experts via an 

interaction at the terminal and then compile that knowledge into an applications program. 

Although current expert systems fall short on some of these criteria, it is arguable 

that they do not have to "understand" a domain in the way that a human can in order to 

solve problems. This claim is based on the theory that it is not necessary to establish a 

connection between a particular problem solving process and the solution itself. In other 

words, all we require is that an expert system gets more or less the same answer as an 

expert, or helps an expert get the right answer. We do not demand that the system go 

through the same steps of reasoning as a human would, or to organize its domain 

knowledge in exactly the same way. 

3. Knowledge is Power 

During the modern period of AI, the belief that the measure of success of a program is 

its ability to quickly and efficiently access relevant knowledge for problem solving 
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purposes. Researchers have developed techniques for encoding human knowledge in 

modules which can be activated by patterns. Whereas early attempts to simulate human 

problem solving strove for uniformity and simplicity, modern attempts at knowledge 

encoding have allowed more flexibility. Unlike more conventional problem solving 

programs, expert systems are expected to offer the user some kind of explanation as to 

how the conclusions were arrived at. 

In response to questions about how experts do their job, few provide a well- 

articulated sequence of steps guaranteed to be successful in all situations. Rather, the 

knowledge that experts possess must be elicited by asking what they would do in specific 

contexts, and then probing further to determine the course of action in other cases. 

As the process of accessing knowledge piece by piece seemed to be closer to the 

way that human experts store and apply their knowledge, the advantages of representing 

human knowledge in pattern-directed modules (instead of encoding it into an algorithm) 

became clear. This method of programming allows for fast prototyping and incremental 

system development. If the system designer and programmer have done their jobs 

properly, the resulting program should be easy to modify so that errors and gaps in the 

knowledge can be remedied without necessitating major adjustments to the existing code. 

Practitioners accept that, in order to be useful, a program does not need to solve 

the whole problem, or even be right one hundred percent of the time. An expert system 

can act as an intelligent assistant, presenting alternatives in the search for a solution, and 

eliminating some of the less promising. The system can effectively leave the final 

decision and some of the intermediate strategic decisions to the user. 
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However, it is also recognized that rule-based systems are not easy to build and 

debug. As the knowledge base grows, rules will tend to interact in unexpected ways, by 

competing to be applied to the problem. 

The Modern Period of AI has seen the development of a number of systems that 

can claim a high level of performance on non-trivial tasks. A number of principles have 

emerged which distinguish these systems from both conventional programs and earlier 

work in AI. The most important of these are considered below. 

The part of the program that contains the representation of domain-specific 

knowledge, the knowledge base, is generally separate from the part that performs the 

reasoning, the inference engine. This means that one can make at least some changes to 

either module without necessarily having to alter the other. Thus one might be able to 

add more knowledge to the knowledge base, or tune the inference engine for better 

performance, without having to modify code elsewhere. 

Practitioners try to use as uniform a representation of knowledge as possible, 

making the knowledge easier to encode and understand, and helping to keep the inference 

engine simple. However, uniformity can become problematic if different kinds of unique 

knowledge are forced into the same categories for the sake of encoding. This dilemma 

creates a conflict resulting in the need to choose between simplicity and variety in the 

representation of knowledge. 
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4. Principles and Techniques 

In the field of expert systems, knowledge representation implies that we have 

some systematic way of codifying what an expert knows about some domain. However, 

it is erroneous to assume that representation is the same thing as encoding. If one 

encodes a message by systematically translating its symbols, the resulting code would not 

accurately represent a message, even though the code would be machine-readable and 

easy to store in the computer's memory. For one thing, the code would preserve any 

lexical or structural ambiguity of natural language inherent in the message. Thus the 

message: 

'Visiting aunts can be a nuisance' 

is just as ambiguous as it is in natural language. Transcribing it into code does not alter 

the fact that it could mean either, It is a nuisance having to visit one's aunt, or, It is a 

nuisance having one's aunt visit. 

Also, any technical communication will assume that the addressee will have some 

prior knowledge. Needless to say, a computer has no such prior knowledge, and so any 

representation of the technical expertise required for problem solving must be self- 

contained. 

Finally, representation implies organization. Simply encoding knowledge in a 

machine-readable form will not achieve organization. Relevant pieces of knowledge 

should be evoked by the circumstances in which they are most likely to be used. Also, a 

knowledge base should be extensively indexed so that any program can control the way 
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in which different pieces pf knowledge are activated without having to know exactly how 

they are stored. 

Of course, whatever notational system is used, ultimately a computer must be able 

to store and process the corresponding codes. This need is not a very constraining 

requirement, however, as distinct representational schemes can be expressed so that they 

are formally equivalent. 

A representation has been defined as 'a set of syntactic and semantic conventions 

that make it possible to describe things' [Ref.115]. In artificial intelligence, 'things' 

normally means the state of some problem domain; for example, the objects in that 

domain, their properties, and any relationships that hold between them. A description 

uses representations to describe some particular thing. 

The semantics of a representation specifies how expressions should be interpreted, 

or how meaning can be derived from form. This specification is usually performed by 

assigning meanings to individual symbols, and finally attaching meaning to more 

complex expressions. 

The syntax of a representation generates a set of rules for combining symbols to 

form expressions in the represented language. It should be possible to tell whether or not 

an expression is well formed, that is, whether or not it could have been generated by the 

rules. A common syntax used in artificial intelligence is a predicate-argument 

construction of the form: 

<sentence> ::= <predicate> (<argument>,... I <argument>) 

in which a k-place predicate is followed by k arguments. 
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5.        Object-Oriented Programming and Knowledge Representation 

Knowledge representation and object-orientation are each based on a common 

perspective, namely that it is at least as important to model the domain of an application 

as it is to model the problem we want to solve. If we are working in a particular domain 

whether it is engineering, publishing, or command and control, the problems to be solved 

will change not only between projects, but also during the course of a single project, due 

to the redefinition and refinement of goals and concepts. What will remain relatively 

constant are the inhabitants of that domain, whether they are machines, processes, 

inanimate objects, or people. Fortunately, assuming that representations are constructed 

with reusability in mind, representations designed for use by machines are likely to find 

multiple applications in a variety of projects. 

What distinguishes knowledge representation from object-orientation generally is 

that knowledge representation attempts to reflect a domain expert's knowledge in addition 

to other domain relevant entities. For example, different ways in which they might be 

viewed, ordered, categorized, and manipulated in the performance of various tasks. Seen 

in this light, the knowledge representation question then becomes: Is it possible to codify 

knowledge about a domain in a manner that supports multiple applications of that 

knowledge to different problems in the context of different projects? 

The most common language used in Expert Systems is the CLIPS language 

[Ref. 105], which combines the 00 and rule-based programming methods. Building a 

rule-based system in such a language is a non-trivial exercise best left to experts. 

CLIPS is chosen as the main vehicle for illustrating rule-based systems (Section E) 

for the following reasons: 
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Is relatively cheap; 

Borrows features from other successful tools; 

Has a fairly standard (albeit LISP-like) syntax. 

Is reasonably efficient, so that programs run in a finite time; 

Is reasonably flexible, e.g., it allows foreign function calls; 

Provides some (limited) facilities for combining rules with objects. 

[Ref. 105] 

On the hand the philosophy and techniques of object-oriented programming have 

a great deal to offer the designers of expert systems: 

• "The philosophy of representing our knowledge of the world in terms of 

interacting objects and agents provides an appropriate framework for many 

classes of problem, particularly those (like planning and scheduling) which 

have a strong simulation component". [Ref. 105] 

• The techniques of procedure and data abstraction encourage AI 

programmers to think about the kinds of object and behavior that are 

relevant to the problem, instead of "becoming engrossed in the 

implementation of functions and data objects at too early a stage in the 

design" [Ref. 105]. 

• There is a growing literature on object-oriented analysis and design which 

is relevant to the design of expert systems modules. 
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It is interesting to note that the limitations of object-oriented technology have 

become apparent in recent years. Because objects are still primarily computational 

devices, literal interpretation of these objects as faithful representations of real-world 

objects can be both confusing and restricting. "Inheritance of behaviors can lead to 

implementation problems" [Ref.105], some new object-oriented schemes only allow 

inheritance of interfaces. 

In a perfect world, one would be able to develop systems, especially expert 

systems, incrementally by simply adding code. But this is not always possible, even 

within the object oriented framework, because adding new modules of knowledge often 

has unanticipated consequences, such as rules in competition with each other or 

ambiguous patterns of inheritance. 

Thus it is obvious that object-oriented methods do not solve all our problems. 

These methods still leave the expert system designer with many difficult decisions to 

make. However, once the design decisions are made, the object-centered approach 

makes design decision easier and facilitates implementation " [Ref.105]. 

C.       SYMBOLIC COMPUTATION 

1. Symbolic Representation 

Symbol is the notion that forms the main link between artificial intelligence and 

formal systems of logic and mathematics. In its most simple definition, a symbol is 

something that stands for something else. This "something else" is usually called the 

designation of the symbol, and may be a physical object or a concept. 
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The idea behind symbolic computation is that we want to allow symbols to stand 

for anything. Programming languages based on this paradigm provide a number of 

primitive data structures for associating symbols with other symbols, as well as primitive 

operations for manipulating symbols and their associated structures. A programmer must 

then specify two types of rules, syntactic and transformation. Syntactic rules form symbol 

structures out of symbols in such a way that the meanings of the resulting structures are 

generated by their individual components. Transformation rules turn symbol structures 

into other symbol structures. 

Typically a symbolic program takes as its input one or more symbol structures 

representing the initial state of some problem, and returns as its output a symbol 

structure, representing a terminal state or solution. This symbol structure should be well- 

formed according to the given the syntactic rules and is derived by the application of 

feasible transformations. Programs in such languages are themselves symbol structures. 

Thus, there is no reason why some programs cannot treat other programs as data, as 

uniformity in the representation of data and programs makes itself particularly useful in 

the context of artificial intelligence. Moreover we can do more than merely write down 

rules for manipulating symbols; we can embody these symbols, and the rules for 

manipulating them, in some physical device. This leads to the physical symbol system, a 

very simple but revolutionary idea. 

2.        Physical Symbol Systems 

A physical symbol system is described as a machine with the following 

components:: 
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• A memory containing symbol structures, which can vary in number and 

content over time; 

• A set of operators for manipulating symbol structures, for example 

reading, writing, and copying; 

• A control for the continual interpretation of whatever symbol structure is 

currently active; 

• An input from its environment via receptors, and an output to that 

environment via some motor component. [Ref. 117] 

A program in a physical symbol system is just "a symbol structure that is 

interpreted or evaluated in some manner that is a function of its constituent symbols and 

its symbolic input" [Ref. 105]. The primitive programs correspond to operators for 

manipulating symbol structures; more complex programs describe processes composed of 

these operators. For the operators, control over the use symbol structures lies in the 

ability to distinguish the difference between data, which is just returned, and programs, 

which must be interpreted. 

A physical symbol system resembles a general-purpose computer equipped with 

symbol processing software. We know that stored program computers are universal 

machines (roughly speaking, they can simulate the operation of any other machine), and 

therefore are capable of computing all general recursive functions (roughly, all functions 

computable by any machine). It is the apparent power of these physical realizations of 

symbol systems that has encouraged researchers to suppose that such systems are capable 

of intelligence. 
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D.       KNOWLEDGE ACQUISITION 

In Section A, we cited Buchanan's definition of knowledge acquisition as the 

"transfer and transformation of potential problem solving expertise from some knowledge 

source to a program" [Ref. 106]. Knowledge acquisition is a generic term, as it is neutral 

with respect to how the transfer of knowledge is achieved. For example, the transfer 

could be achieved by a computer program that, after processing a large number of case 

studies, learns to associate symptoms with diagnoses categories. 

The term knowledge elicitation, on the other hand, often implies that the transfer 

is a result of a series of interviews between a domain expert and a knowledge engineer, 

who then writes a computer program representing the knowledge. The use of such 

programs is advantageous because it is less labor intensive, and can in one step 

accomplish the transfer of knowledge from the expert to a prototype. However, the term 

could also be applied to the interaction between an expert and program whose purpose is: 

• Eliciting knowledge from experts in a systematic way (e.g., presenting 

them with sample problems and asking for solutions); 

• Storing knowledge obtained from the interaction using an intermediate 

representation; and 

• Compiling the knowledge from the intermediate representation into a 

runnable form, such as production rules . 

In this section, Subsection 1 suggests ways in which knowledge acquisition can 

be broken down into different stages of activity or levels of analysis.   Subsection 2 
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reviews some early work on automated knowledge elicitation, which focused on the 

syntax of rules. 

1.        Theoretical analyses of knowledge acquisition 

We mentioned in Section A that knowledge elicitation interviews generate 

between two and five 'production rule equivalents' per day. The reasons why 

productivity is so poor include the following: 

• The technical nature of specialist fields requires the non-specialist 

knowledge engineer to learn something about the domain before 

communication can be productive; 

• The fact that experts tend to think less in terms of general principles and 

more in terms of typical objects and commonly occurring events 

[Ref.105]; and 

• The challenge of developing effective notation for expressing domain 

knowledge, and a finding good framework for uniting all of the various 

pieces. 

As with any difficult task, it is beneficial to try to break the process of knowledge 

acquisition down into subtasks that are easier to understand and simpler to carry out. 

2. Stages of knowledge acquisition 

[Ref. 106] offers an analysis of knowledge acquisition in terms of a process model 

of how to construct an expert system (see Figure A.1), the summary of these stages is: 
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Identification. Identify the class of problems the system will be expected 

to solve, including the data that the system will work with, and the criteria 

that solutions must meet. Identify the resources available for the project, 

in terms of expertise, manpower, time constraints, computing facilities and 

money. 
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Figure A.1: Stages of knowledge acquisition. 

Conceptualization. Uncover the key concepts and the relationships 

between them. This should include a characterization of the different 

kinds of data, the flow of information and the underlying structure of the 

domain, in terms of causal, spatio-temporal, or part-whole relationships, 

and so on [Ref. 106]. 

Formalization. Try to understand the nature of the underlying search 

space, and the character of the search to be conducted.  Important issues 
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include the certainty and completeness of the information and other 

constraints upon the logical interpretation of the data, (i.e., time 

dependency, and the reliability and consistency of different data sources). 

[Ref.106]. 

• Implementation. Express rules in an executable form under a chosen 

control regime. Decisions must be made about the structures of data and 

the degree of independence between different modules of the program. In 

turning a formalization of knowledge into a runnable program, one is 

primarily concerned with the specification of control and the details of 

information flow. 

• Testing. The evaluation of expert systems is not an exact science, but it is 

clear that achieving the task is facilitated by running the program on a 

large and representative sample of test cases. Common sources of error 

are rules (either missing, incomplete or incorrect), and competition 

between related rules that can cause unexpected bugs. 

As Figure A.l suggests, the primary consideration in designing an expert system 

is the class of problems that we want the system to solve. Beginning with either a 

particular conceptual analysis of the domain or with a particular organization of 

knowledge in mind is a mistake, because one the way in which we represent concepts to 

ourselves and organize our ideas depends largely upon our own needs and purposes. 
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3.        Different Levels In the Analysis of Knowledge 

The distinction drawn between identification, conceptualization, and 

formalization can be found in the work of Wielinga and Schneider [Ref. 118] who have 

developed a modeling approach to knowledge engineering within a framework called 

KADS. The authors argue that "a knowledge-based system is not a container filled with 

knowledge extracted from an expert but an 'operational model1 that exhibits some desired 

behavior and impacts real-world phenomena" [Ref. 118]. Knowledge acquisition 

involves not just eliciting domain knowledge but also interpreting that data using a 

conceptual framework, and formalizing the conceptualizations so that a program can 

actually use the knowledge. 

The KADS framework is founded on five basic principles, as follows: 

1. "The introduction of multiple models as a means to cope with the complexity 

of the knowledge engineering process" [Ref. 118]. 

2. The KADS four-layer framework for modeling the required expertise. 

3. The reusability of generic model components as templates supporting top- 

down knowledge acquisition [Ref. 118]. 

4. The process of differentiating simple models into more complex ones. 

5. The importance of structure-preserving transformation of models of expertise 

into design and implementation. 

The motivation behind the KADS framework is primarily the management of 

complexity [Ref. 118]. Today's knowledge engineer is faced with a large space of 

methods, techniques and tools which could be used to build an expert system. However, 

he or she is also faced with three fixed issues, namely: (1) Defining the problem that the 
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expert system is meant to solve, (2) Defining the function that the expert system will 

fulfill with respect to that problem, and (3) Defining the tasks that must be performed in 

order to fulfill that function. 

The first principle of KADS is that "a framework should provide multiple partial 

models to help answer these questions" [Ref. 118], for example: 

• "An organizational model of a socio-economic environment in which the 

system will operate, (e.g., financial services, health care) 

• An application model of the problem to be solved and the task to be 

accomplished. 

• A task model which shows how the task is completed by breaking the 

desired behaviors into component tasks, (e.g., gathering income data, and 

generating disease hypotheses). 

The original KADS approach breaks the 'conceptualization stage' down into two 

parts: a model of cooperation or communication and a model of expertise. The former is 

responsible for decomposing the problem solving behavior into primitive tasks and then 

distributing these tasks across agents, whether human or mechanical. The latter 

corresponds to what is usually understood by the term "knowledge elicitation," primarily 

an analysis of the different kinds of knowledge that an expert brings to the problem 

solving process" 

Finally, there is the design model that suggests computational techniques and 

representational mechanisms that could be used to realize the specification derived from 

the previous models. 
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4.        Ontological analysis 

Another knowledge-level analysis for expert problem solving is called ontological 

analysis. This approach describes systems in terms of entities, relations between them, 

and transformations between entities that occur during the performance of some task. 

Ontological analysis may seem rather abstract, but is valuable because of its tendencies to 

structure a rather unstructured task There are three main categories for structuring 

domain knowledge: 

1. The static ontology, consisting of domain entities and their properties and 

relations; 

2. The dynamic ontology, defining the states that occur in problem solving, and 

the ways to transform one state into another; 

3. The epistemic ontology, describing the knowledge that guides and constrains 

state transformations" [Ref. 118]. 

Ontological analysis assumes that the problem in question can be reduced to a 

search problem, but unlike other types of analyses, ontological analysis does revolve 

around the method used to perform a search. 
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Prof. Thomas Wu  

Computer Science Department Code CS 

Naval Postgraduate School 

Monterey, CA 93943-5000 

Deniz Kuwetleri Komutanligi. 

Personel Daire Baskanligi 

Bakanliklar 

Ankara, TURKEY 
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7. Deniz Kuwetleri Komutanligi Kutuphanesi 1 

Bakanliklar 

Ankara, TURKEY 

8. Deniz Harp Okulu Kutuphanesi 1 

Tuzla 

Istanbul, TURKEY 

9. Yazilim Gelistirme Grup Baskanligi 1 

Deniz Harp Okulu 

Tuzla 

Istanbul, TURKEY 

10.   Dz. Kd. Utgm Levent Ince 1 

Erol Gulen 

350 Evler Mahallesi 

4.Yol No. 36/4 

Nevsehir, TURKEY 
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